Issue 11, 2019

CO2 conversion by high-dose rate electron beam irradiation: one-step, metal-free and simultaneous production of H2, CO, CH4, C2H6 and organic acids from an acid-decomposed CaCO3/additive EtOH mixture

Abstract

The reduction in CO2 emissions is an important issue across many industries. Inspired by extraterrestrial organic matter formation, we herein report a CO2 conversion approach based on high-dose rate electron beam (EB) irradiation of an acid-decomposed CaCO3/additive EtOH mixture. With 13C-CaCO3, 12C-EtOH and 100 kGy s−1 EB, H2, CO, CH4, C2H6 and organic acids are simultaneously produced within a few seconds, except for 2,3-butanediol formation from excess EtOH. According to the organic analysis results, CO and organic acids contain 13C carbon derived from 13C-CaCO3. The high-dose rate EB gives increased CO2 conversion products compared to the low-dose rate EB. The CO2 conversion yield/energy efficiency (product energy/input electrical energy) at 300 kGy is 1.51/0.50% in total (CO: 0.03/0.01%, formic acid: 1.31/0.29%, acetic acid: 0.05/0.04% and propionic acid: 0.12/0.16%), and the total radiation energy efficiency (REE, product energy/net radiation energy) of CO2 at 300 kGy is 51.5% (CO: 0.90%, formic acid: 30.3%, acetic acid: 3.71% and propionic acid: 16.6%). The CO2 conversion yield is ∼15 times larger than that of the only known CO2 gas radiolysis (0.1%, CO only). Furthermore, the REE at 100 kGy is also ∼15 times higher than that obtained in the absence of EtOH. The energy input for the 100% conversion yield is estimated to be 38 000 GJ per t-CO2. The combination of the high-dose rate EB with organic additives facilitated CO2 capture by radicals to afford improved CO2 conversion efficiency/yield.

Graphical abstract: CO2 conversion by high-dose rate electron beam irradiation: one-step, metal-free and simultaneous production of H2, CO, CH4, C2H6 and organic acids from an acid-decomposed CaCO3/additive EtOH mixture

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2019
Accepted
30 Apr 2019
First published
15 May 2019
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2019,21, 3091-3098

CO2 conversion by high-dose rate electron beam irradiation: one-step, metal-free and simultaneous production of H2, CO, CH4, C2H6 and organic acids from an acid-decomposed CaCO3/additive EtOH mixture

Y. Hosokawa, S. Kajiya, A. Ohshima, N. Ishida, M. Washio and A. Usuki, Green Chem., 2019, 21, 3091 DOI: 10.1039/C9GC00525K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements