Jump to main content
Jump to site search

Issue 3, 2018
Previous Article Next Article

Achieving white light emission and increased magnetic anisotropy by transition metal substitution in functional materials based on dinuclear DyIII(4-pyridone)[MIII(CN)6]3− (M = Co, Rh) molecules

Author affiliations

Abstract

A building block approach has led to the construction of two unique bifunctional magneto-luminescent molecular materials, {[DyIII(4-pyridone)4(H2O)2][MIII(CN)6]}·nH2O (M = Co, n = 2, 1; M = Rh, n = 4, 2), incorporating the cyanido-bridged dinuclear {DyIIICoIII} (1) or {DyIIIRhIII} (2) molecules, that crystallize within the supramolecular network in the attractive non-centrosymmetric Cmc21 space group. Both compounds reveal dual physical properties of colour-tunable photoluminescence and slow relaxation of magnetization. While 1 exhibits multi-coloured photoluminescence ranging from yellow to blue, tuned by the excitation wavelength, 2 additionally reveals nearly white light emission under 336 nm excitation at room temperature. 1 and 2 show 4f-metal-centered strong magnetic anisotropy presenting Single-Molecule Magnet (SMM) behaviour with the large anisotropic energy barriers of 187(6) K for 1, and 214(4) K for 2. We have shown and discussed that the replacement of [CoIII(CN)6]3− by the heavier [RhIII(CN)6]3− analogue in {[DyIII(4-pyridone)4(H2O)2][MIII(CN)6]}·2H2O crystalline materials is an efficient route towards white light emissive solid state matrices composed of Single-Molecule Magnets with enhanced magnetic anisotropy. Such extraordinary photoluminescent molecule-based magnets can become good prerequisites for future application in bifunctional optical and magnetic devices.

Graphical abstract: Achieving white light emission and increased magnetic anisotropy by transition metal substitution in functional materials based on dinuclear DyIII(4-pyridone)[MIII(CN)6]3− (M = Co, Rh) molecules

Back to tab navigation

Supplementary files

Article information


Submitted
30 Aug 2017
Accepted
18 Nov 2017
First published
18 Nov 2017

J. Mater. Chem. C, 2018,6, 473-481
Article type
Paper

Achieving white light emission and increased magnetic anisotropy by transition metal substitution in functional materials based on dinuclear DyIII(4-pyridone)[MIII(CN)6]3− (M = Co, Rh) molecules

J. Wang, S. Chorazy, K. Nakabayashi, B. Sieklucka and S. Ohkoshi, J. Mater. Chem. C, 2018, 6, 473
DOI: 10.1039/C7TC03963H

Social activity

Search articles by author

Spotlight

Advertisements