Issue 3, 2019

Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials

Abstract

Short peptides or single amino acids are interesting building blocks for fabrication of hydrogels, frequently used as extracellular matrix-mimicking scaffolds for cell growth in tissue engineering. The combination of two or more peptide hydrogelators could allow obtaining different materials exhibiting new architectures, tunable mechanical properties, high stability and improved biofunctionality. Here we report on the synthesis, formulation and multi-scale characterization of peptide-based mixed hydrogels formed by the low molecular weight Fmoc-FF (Nα-fluorenylmethyloxycarbonyl diphenylalanine) hydrogelator and of the PEG8-(FY)3 hexapeptide, containing three repetitions of the Phe-Tyr motif and a PEG moiety at its N-terminus. Mixed hydrogels were also prepared by replacing PEG8-(FY)3 with its analogue (FY)3, without the PEG moiety. Rheology analysis confirmed the improved mechanical features of the multicomponent gels prepared at two different ratios (2/1 or 1/1, v/v). However, the presence of the hydrophilic PEG polymeric moiety causes a slowing down of the gel kinetic formation (from 42 to 18 minutes) and a decrease of the gel rigidity (G′ from 9 to 6 kPa). Preliminary in vitro biocompatibility and cell adhesion assays performed on Chinese hamster ovarian (CHO) cells suggest a potential employment of these multicomponent hydrogels as exogenous scaffold materials for tissue engineering.

Graphical abstract: Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2018
Accepted
13 Dec 2018
First published
13 Dec 2018

Soft Matter, 2019,15, 487-496

Fmoc-FF and hexapeptide-based multicomponent hydrogels as scaffold materials

C. Diaferia, M. Ghosh, T. Sibillano, E. Gallo, M. Stornaiuolo, C. Giannini, G. Morelli, L. Adler-Abramovich and A. Accardo, Soft Matter, 2019, 15, 487 DOI: 10.1039/C8SM02366B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements