Issue 11, 2018

Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1H-imidazol-5-yl)-1H-indole-5-carboxamides, low-basicity 5-HT7 receptor agonists

Abstract

Close structural analogues of 5-carboxamidotryptamine (5-CT) based on the newly discovered indole–imidazole scaffold were synthesized and evaluated to search for a 5-HT7 receptor agonist of higher selectivity. In vitro drug-likeness studies and in vivo pharmacological evaluation of potent and selective low-basicity 5-HT7 receptor agonists, previously published 7 (3-(1-ethyl-1H-imidazol-5-yl)-1H-indole-5-carboxamide, AH-494) and 13 (3-(1-methyl-1H-imidazol-5-yl)-1H-indole-5-carboxamide), have supported their usefulness as pharmacological tools. Comprehensive in vitro comparison studies between 7, 13 and the commonly used 5-CT showed their very similar ADMET properties. Compound 7 at 1 mg kg−1 reversed MK-801-induced disruption in novel object recognition in mice and alleviated stress-induced hyperthermia (SIH) at high doses. Taking into account both in vitro and in vivo data, 7 and 13 may be considered as alternatives to 5-CT as pharmacological tools with important additional benefit associated with their low-basicity: high selectivity over 5-HT1AR.

Graphical abstract: Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1H-imidazol-5-yl)-1H-indole-5-carboxamides, low-basicity 5-HT7 receptor agonists

Supplementary files

Article information

Article type
Research Article
Submitted
23 Jun 2018
Accepted
21 Sep 2018
First published
25 Sep 2018

Med. Chem. Commun., 2018,9, 1882-1890

Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1H-imidazol-5-yl)-1H-indole-5-carboxamides, low-basicity 5-HT7 receptor agonists

G. Latacz, A. S. Hogendorf, A. Hogendorf, A. Lubelska, J. M. Wierońska, M. Woźniak, P. Cieślik, K. Kieć-Kononowicz, J. Handzlik and A. J. Bojarski, Med. Chem. Commun., 2018, 9, 1882 DOI: 10.1039/C8MD00313K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements