Issue 3, 2017

pH effects in the acetaldehyde–ammonia reaction

Abstract

The pH dependency of the reaction of acetaldehyde and ammonia to form the acetaldehyde-ammonia trimer has been studied in detail. The acetaldehyde-ammonia trimer is a molecule of interest in organic synthesis, since it can be used as a substrate in many reactions involving acetaldehyde or ammonia. This trimer is well known in the literature but no references are present so far to describe its formation from ammonia sources other than ammonium hydroxide. The focus of this study is on describing the course of reaction after addition of acetaldehyde to solutions of ammonia and various acids. Products have been analysed by means of 1H-NMR and IR spectroscopy and the complete range of pH values has been covered. Depending on the pH, two reaction regimes can be distinguished. At high pH, only the trimer is formed. In contrast, at low pH, only low quantities of the trimer are produced and the nature of the applied acid has a distinct effect on the reaction outcome. Inorganic acids result in low trimer concentration and high quantity of unreacted ammonia. Polymer formation dominates with simple carboxylic acids. Complex organic acids, such as e.g. maleic or nicotinic acid, lead to comparable quantities of the trimer and acetaldehyde. Based on our results, we propose some adjustments to the traditional reaction scheme developed for acetaldehyde-ammonia trimer formation at high pH.

Graphical abstract: pH effects in the acetaldehyde–ammonia reaction

Article information

Article type
Paper
Submitted
19 Jan 2017
Accepted
28 Feb 2017
First published
28 Feb 2017

React. Chem. Eng., 2017,2, 382-389

pH effects in the acetaldehyde–ammonia reaction

E. Moioli, L. Schmid, P. Wasserscheid and H. Freund, React. Chem. Eng., 2017, 2, 382 DOI: 10.1039/C7RE00006E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements