Exploring the electrochromic properties of poly(thieno[3,2-b]thiophene)s decorated with electron-deficient side groups†
Abstract
Two novel thieno[3,2-b]thiophene (TT)/3,4-ethylenedioxythiophene (EDOT)-based compounds of 2,5-(EDOT–TT–EDOT) type bearing electron-withdrawing side groups (4-cyanophenyl or 4-pyridyl) at 3,6-positions of the TT moiety have been synthesized. Their electropolymerization leads to electroactive conjugated polymers, P(CNPh-ETTE) and P(Py-ETTE), which possess electrochromic properties changing the color from purple to pale grey-blue or from sand brown to pale grey-green, respectively. Cyclic voltammetry and spectroelectrochemical experiments reveal that functionalization with electron-withdrawing side groups decreases the HOMO and LUMO energy levels and contracts the band gap of materials. Both new polymers demonstrated extremely short response times of 0.9–1.1 s for bleaching and 0.34–0.35 s for coloring. P(CNPh-ETTE) and P(Py-ETTE) polymers showed reasonably good contrast (16–23%) and coloration efficiency (120–190 cm2 C−1) in the visible region (at the maxima of their π–π* transitions, 540/570 nm), and high contrast and coloration efficiency in the near-infrared region (50–62% and 324–440 cm2 C−1 at 1500 nm, respectively). While the stability of the pyridine-functionalized polymer, P(Py-ETTE), was shown to be low (with unstable charge–discharge characteristics, presumably due to the protonation of the pyridine ring during the redox process), P(CNPh-ETTE) demonstrated superior electrochromic performance retaining 91–96% of its electroactivity after 2000 cycles between −0.5 and +1.0 V. DFT calculations on these and related EDOT–TT–EDOT polymers reported by us early have been presented and analyzed to understand the structure–property relationships in this class of electrochromic polymers.

Please wait while we load your content...