Issue 28, 2017

Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes

Abstract

Simulations of CO2 and H2 sorption were performed in UTSA-20, a metal–organic framework (MOF) having zyg topology and composed of Cu2+ ions coordinated to 3,3′,3′′,5,5′,5′′-benzene-1,3,5-triyl-hexabenzoate (BHB) linkers. Previous experimental studies have shown that this MOF displays remarkable CO2 sorption properties and exhibits one of the highest gravimetric H2 uptakes at 77 K/1.0 atm (2.9 wt%) [Z. Guo, et al. Angew. Chem., Int. Ed., 2011, 50, 3178–3181]. For both sorbates, the simulations were executed with the inclusion of explicit many-body polarization interactions, which was necessary to reproduce sorption onto the open-metal sites. Non-polarizable potentials were also utilized for simulations of CO2 sorption as a control. The simulated excess sorption isotherms for both CO2 and H2 are in very good agreement with the corresponding experimental data over a wide range of temperatures and pressures, thus demonstrating the accuracy and predictive power of the polarizable potentials used herein. The theoretical isosteric heat of adsorption (Qst) values are also in good agreement with the newly reported experimental Qst values for the respective sorbates in UTSA-20. Sorption onto the more positively charged Cu2+ ion of the [Cu2(O2CR)4] cluster was observed for both CO2 and H2. However, a binding site with energetics comparable to that for an open-metal site was also discovered for both sorbates. A radial distribution function (g(r)) analysis about the preferential Cu2+ ions for CO2 and H2 revealed that both sorbates display different trends for the relative occupancy about such sites upon increasing/decreasing the pressure in the MOF. Overall, this study provides insights into the CO2 and H2 sorption mechanisms in this MOF containing open-metal sites and small pore sizes for the first time through a classical polarizable force field.

Graphical abstract: Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes

Supplementary files

Article information

Article type
Paper
Submitted
27 Apr 2017
Accepted
20 Jun 2017
First published
20 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 18587-18602

Predictive models of gas sorption in a metal–organic framework with open-metal sites and small pore sizes

T. Pham, K. A. Forrest, D. M. Franz, Z. Guo, B. Chen and B. Space, Phys. Chem. Chem. Phys., 2017, 19, 18587 DOI: 10.1039/C7CP02767B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements