Issue 47, 2016

Dielectric effects on the ion distribution near a Janus colloid

Abstract

Spherical Janus colloids, particles with different surface properties on their two hemispheres, are generally heterogeneous in permittivity. This dielectric heterogeneity may affect their behavior in electrolytes and external electric fields, but is typically not taken into account in computational studies. We apply the iterative dielectric solver developed by Barros and Luijten [Phys. Rev. Lett., 2014, 113, 017801] in combination with preconditioning techniques that can accurately and efficiently compute the polarization of dielectrically anisotropic particles. Employing this approach, we systematically study the ion distribution around neutral and charged Janus particles with various permittivities, immersed in symmetric and asymmetric electrolytes. We demonstrate that neutral Janus colloids may carry a nonzero dipole moment in asymmetric salts. For charged Janus colloids, dielectric effects can substantially influence the electric double layer. These findings also have implications for other dielectrically anisotropic entities, such as proteins.

Graphical abstract: Dielectric effects on the ion distribution near a Janus colloid

Article information

Article type
Paper
Submitted
22 Jul 2016
Accepted
18 Oct 2016
First published
18 Oct 2016

Soft Matter, 2016,12, 9575-9584

Dielectric effects on the ion distribution near a Janus colloid

H. Wu, M. Han and E. Luijten, Soft Matter, 2016, 12, 9575 DOI: 10.1039/C6SM01675H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements