Issue 115, 2016, Issue in Progress

Macromolecular crowders and osmolytes modulate the structural and catalytic properties of alkaline molten globular 5-aminolevulinate synthase

Abstract

The molten globule state is a dynamic ensemble of conformational subsets, where proteins lack well-defined tertiary structure, but retain native-like content of secondary structure and a relatively compact fold. Using various spectroscopic techniques, we characterized the effects of macromolecular crowders and osmolytes on the structural and catalytic properties of the alkaline molten globule state of murine erythroid 5-aminolevulinate synthase (mALAS2alk defined at pH 9.5/37 °C). The tertiary structure rigidity of mALAS2alk, as discerned from near-UV circular dichroic (CD) measurements, increased in the presence of the osmolytes N-trimethylamine oxide (TMAO) and glycerol. In contrast, the macromolecular crowders Dextran 200 and Ficoll 400, even at concentrations of 20% (w/v), were far less effective in rigidifying the tertiary structure. At this concentration of Dextran 200, the far-UV ellipticity of mALAS2alk intensified, implicating stabilization of secondary structural elements in the crowded environment. Furthermore, in the presence of Dextran, the solubility of mALAS2alk strongly depended on the molar concentration of the AMPSO buffer, suggesting changes in the surface hydration of the enzyme. Through ligand-induced enhancement of the tertiary structure rigidity, the solubility of mALAS2alk increased under crowded conditions that otherwise favored precipitation of the holoenzyme. The kcat value of mALAS2alk (pH 9.5/37 °C) increased significantly upon the addition of cosolvents, although the rates remained lower than the kcat determined under physiological conditions (pH 7.5/37 °C). Our data suggest that the molecular properties of at least some molten globular proteins might be modulated within the highly crowded and osmolyte enriched intracellular environment.

Graphical abstract: Macromolecular crowders and osmolytes modulate the structural and catalytic properties of alkaline molten globular 5-aminolevulinate synthase

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2016
Accepted
16 Nov 2016
First published
28 Nov 2016

RSC Adv., 2016,6, 114541-114552

Macromolecular crowders and osmolytes modulate the structural and catalytic properties of alkaline molten globular 5-aminolevulinate synthase

Bosko M. Stojanovski, L. Breydo, V. N. Uversky and G. C. Ferreira, RSC Adv., 2016, 6, 114541 DOI: 10.1039/C6RA22533K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements