Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate
Abstract
We report a simple and effective approach to fabricate graphene/nickel (G/Ni) aerogels by a sol–gel method and supercritical CO2 drying technique. The crystalline structure and chemical composition of the G/Ni aerogels have been investigated using X-ray diffraction and X-ray photoelectron spectroscopy. The morphology and porous attributes of the G/Ni aerogels have been characterized by transmission electron microscopy, scanning electron microscopy and nitrogen adsorption tests. Results indicate that the resulting aerogels, in which the Ni nanoparticles are dispersed on the graphene sheets, exhibit mesoporous structure and large surface areas. The catalysis effect of the G/Ni aerogels on the thermal decomposition of ammonium perchlorate was studied by differential scanning calorimetry. When 9 wt% of the aerogels was added, the thermal decomposition temperature of ammonium perchlorate was decreased by 122 °C. The results show that the G/Ni aerogels exhibit a remarkable catalytic performance for the thermal decomposition of ammonium perchlorate due to the combination of Ni nanoparticles and graphene sheets.