Issue 85, 2016, Issue in Progress

Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions

Abstract

Here, we report the valorization of coffee bean waste (CBW) by producing nitrogen doped porous carbon (p-Cof) having both photocatalytic and electrocatalytic properties using a silica templating method. Morphological investigation of p-Cof reveals the presence of assemblies of highly porous flat carbon blocks. p-Cof exhibits a high surface area (1213 m2 g−1) and a wide range of micro- and mesopores with good electrical conductivity. Along with this, the surface of p-Cof displays the presence of graphitic and pyridone-type nitrogen coordinations, which help p-Cof to perform as a multifunctional catalyst as revealed from its catalytic activities towards photocatalytic hydrogen production (PHP) and electrocatalytic oxygen reduction reactions. p-Cof produces 334 μmol h−1 g−1 of hydrogen from water under visible light and 575 μmol h−1 g−1 of hydrogen under solar light irradiation with excellent stability. Along with this, p-Cof also displays improved oxygen reduction reaction (ORR) activity in alkaline medium. A better onset potential (0.91 V vs. RHE) and half-wave potential (0.75 V vs. RHE) are displayed by p-Cof compared to the catalyst derived from the simple annealing of CBW without employing the silica template. Along with the better electrochemical activity, p-Cof shows excellent ORR kinetics and electrochemical stability compared to the current state-of-the-art Pt/C.

Graphical abstract: Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2016
Accepted
22 Aug 2016
First published
23 Aug 2016

RSC Adv., 2016,6, 82103-82111

Valorization of coffee bean waste: a coffee bean waste derived multifunctional catalyst for photocatalytic hydrogen production and electrocatalytic oxygen reduction reactions

S. M. Unni, L. George, S. N. Bhange, R. N. Devi and S. Kurungot, RSC Adv., 2016, 6, 82103 DOI: 10.1039/C6RA14907C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements