Issue 7, 2016

Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles generated highly substituted cyclopentenes through an unexpected phosphine α-addition-δ-evolvement of an anion pathway

Abstract

Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles provide highly substituted syn-selective cyclopentenes appending the phosphorus ylide moiety in good yield with a diastereoselectivity of up to 100% through resonance-derived 1,5-dipolar species as the key intermediates, via the nucleophilic α(δ′)-attack of phosphines toward enynedioates followed by addition to benzylidene malononitriles and 5-exo-dig cyclization. Through computational analyses, the overall reactions for the formation of syn- and anti-diastereomers are both exothermic with 65.6 and 66.3 kcal mol−1 at the B3LYP-D3/6-31G(d) level of theory and were found to be kinetically controlled, which favours the formation of syn-diastereomers.

Graphical abstract: Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles generated highly substituted cyclopentenes through an unexpected phosphine α-addition-δ-evolvement of an anion pathway

Supplementary files

Article information

Article type
Paper
Submitted
30 Nov 2015
Accepted
07 Jan 2016
First published
08 Jan 2016

Org. Biomol. Chem., 2016,14, 2306-2317

Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles generated highly substituted cyclopentenes through an unexpected phosphine α-addition-δ-evolvement of an anion pathway

S. Chuang, S. Sung, J. Deng, M. Chiou and D. Hsu, Org. Biomol. Chem., 2016, 14, 2306 DOI: 10.1039/C5OB02445E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements