Issue 31, 2016

Optimizing the electric field around solid and core–shell alloy nanostructures for near-field applications

Abstract

The near electric field enhancement around plasmonic nanoparticles (NPs) is very important for applications like surface enhanced spectroscopies, plasmonic dye-sensitized solar cells and plasmon-enhanced OLEDs, where the interactions occur close to the surface of the NPs. In this work we have calculated the near-field enhancement around solid and core–shell alloy NPs as a function of their geometrical parameters and composition. We have found that the field enhancement is lower in the AuxAg1−x alloys with respect to pure Ag NPs, but it is still high enough for most near-field applications. The higher order modes have a stronger influence over the near-field due to a sharper spatial decay of the near electric field with the increase of the order of multipolar modes. For the same reason, in AuxAg1−x@SiO2 core–shell structures, the quadrupolar mode is dominant around the core, whereas the dipolar mode is predominant around the shell. The LSPR modes can have different behaviours in the near- and the far-field, particularly for larger particles with high Ag contents, which indicates that caution must be exercised for designing plasmonic nanostructures for near-field applications, as the variations of the LSPR in the near-field cannot be inferred from those observed in the far-field. These results have important implications for the application of gold–silver alloy NPs in surface enhanced spectroscopies and in the fabrication of plasmon-based optoelectronic devices, like dye-sensitized solar cells and plasmon-enhanced organic light-emitting diodes.

Graphical abstract: Optimizing the electric field around solid and core–shell alloy nanostructures for near-field applications

Article information

Article type
Paper
Submitted
11 May 2016
Accepted
04 Jul 2016
First published
05 Jul 2016

Nanoscale, 2016,8, 14836-14845

Author version available

Optimizing the electric field around solid and core–shell alloy nanostructures for near-field applications

L. Montaño-Priede, O. Peña-Rodríguez, A. Rivera, A. Guerrero-Martínez and U. Pal, Nanoscale, 2016, 8, 14836 DOI: 10.1039/C6NR03801H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements