Issue 3, 2016

One-pot solvothermal synthesis of bimetallic yolk–shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction

Abstract

Well-defined bimetallic yolk–shell nanostructures of Ni@PtNi nanocrystals with porous shells were uniformly deposited on reduced graphene oxide (Ni@PtNi NCs-rGO) under hydrothermal conditions. The physical characterization was systematically investigated by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The as-fabricated products exhibited improved catalytic performance toward the reduction of p-nitrophenol in comparison with commercial Pt/C (50 wt%), monometallic Pt nanoparticles/rGO and Ni nanoparticles/rGO catalysts.

Graphical abstract: One-pot solvothermal synthesis of bimetallic yolk–shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2015
Accepted
06 Jan 2016
First published
07 Jan 2016

New J. Chem., 2016,40, 2315-2320

Author version available

One-pot solvothermal synthesis of bimetallic yolk–shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction

L. Mei, R. Wang, P. Song, J. Feng, Z. Wang, J. Chen and A. Wang, New J. Chem., 2016, 40, 2315 DOI: 10.1039/C5NJ02923F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements