Jump to main content
Jump to site search

Issue 8, 2016
Previous Article Next Article

Quantifying the value of CCS for the future electricity system

Author affiliations

Abstract

Many studies have quantified the cost of Carbon Capture and Storage (CCS) power plants, but relatively few discuss or appreciate the unique value this technology provides to the electricity system. CCS is routinely identified as a key factor in least-cost transitions to a low-carbon electricity system in 2050, one with significant value by providing dispatchable and low-carbon electricity. This paper investigates production, demand and stability characteristics of the current and future electricity system. We analyse the Carbon Intensity (CI) of electricity systems composed of unabated thermal (coal and gas), abated (CCS), and wind power plants for different levels of wind availability with a view to quantifying the value to the system of different generation mixes. As a thought experiment we consider the supply side of a UK-sized electricity system and compare the effect of combining wind and CCS capacity with unabated thermal power plants. The resulting capacity mix, system cost and CI are used to highlight the importance of differentiating between intermittent and firm low-carbon power generators. We observe that, in the absence of energy storage or demand side management, the deployment of intermittent renewable capacity cannot significantly displace unabated thermal power, and consequently can achieve only moderate reductions in overall CI. A system deploying sufficient wind capacity to meet peak demand can reduce CI from 0.78 tCO2/MWh, a level according to unabated fossil power generation, to 0.38 tCO2/MWh. The deployment of CCS power plants displaces unabated thermal plants, and whilst it is more costly than unabated thermal plus wind, this system can achieve an overall CI of 0.1 tCO2/MWh. The need to evaluate CCS using a systemic perspective in order to appreciate its unique value is a core conclusion of this study.

Graphical abstract: Quantifying the value of CCS for the future electricity system

Back to tab navigation

Publication details

The article was received on 15 Apr 2016, accepted on 12 Jul 2016 and first published on 12 Jul 2016


Article type: Analysis
DOI: 10.1039/C6EE01120A
Author version
available:
Download author version (PDF)
Citation: Energy Environ. Sci., 2016,9, 2497-2510
  • Open access: Creative Commons BY license
  •   Request permissions

    Quantifying the value of CCS for the future electricity system

    C. F. Heuberger, I. Staffell, N. Shah and N. Mac Dowell, Energy Environ. Sci., 2016, 9, 2497
    DOI: 10.1039/C6EE01120A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements