Issue 39, 2015

Low voltage actuator using ionic polymer metal nanocomposites based on a miscible polymer blend

Abstract

Bio-compatible actuators are required to exhibit a large actuation displacement and force at a low voltage for various applications in liquid environments, including swimming robots, biomedical catheters, biomimetic sensory-actuators, and drug delivery micro-pumps. Recently, ionic polymer metal nanocomposites (IPMNCs) based on Nafion have been widely used for bio-compatible actuators; however, they have been demonstrated to operate only at high voltages in the range of 2 to 5 V, resulting in water hydrolysis problems which are accompanied by a degradation of actuation performance. Here, we show that IPMNC actuators based on a poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)]/polyvinylpyrrolidone (PVP)/polystyrene sulfonic acid (PSSA) polymer blend membrane can exhibit a large actuation displacement and force at a low voltage of 1 V. Due to the ferroelectric nature of P(VDF-TrFE), the large dipole moment of P(VDF-TrFE) can cause strong intermolecular bonding, causing the P(VDF-TrFE)/PVP/PSSA blend membrane to be miscible. We found that the P(VDF-TrFE)/PVP/PSSA blend membrane with a blending ratio of 30/15/55 can produce the highest proton conductivity (0.0065 S cm−1) and ion exchange capacity (2.95 meq g−1) as compared to those of the commercial Nafion membrane, due to its miscible nature. Our IPMNC exhibits both an enhanced actuation displacement and force by up to 2 times in comparison with those of the IPMNC based on the commercial Nafion-based ionic membrane. Our P(VDF-TrFE)/PVP/PSSA IPMNC shows a stable actuation performance for up to 2200 cycles in hydrated conditions.

Graphical abstract: Low voltage actuator using ionic polymer metal nanocomposites based on a miscible polymer blend

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2015
Accepted
07 Aug 2015
First published
07 Aug 2015

J. Mater. Chem. A, 2015,3, 19718-19727

Low voltage actuator using ionic polymer metal nanocomposites based on a miscible polymer blend

V. Panwar, J. Jeon, G. Anoop, H. J. Lee, I. Oh and J. Y. Jo, J. Mater. Chem. A, 2015, 3, 19718 DOI: 10.1039/C5TA05807D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements