Jump to main content
Jump to site search

Issue 42, 2015
Previous Article Next Article

Ammonia-storage in lithium intercalated fullerides

Author affiliations

Abstract

Ammonia has been proposed as an indirect hydrogen carrier, as solid-state ammonia-storage could be easier than directly absorbing hydrogen in materials. Here we investigate the structural evolution of hyper-ammoniated lithium fullerides (ND3)yLi6C60 during ammonia desorption, using in-situ high intensity neutron powder diffraction. In (ND3)yLi6C60, ammonia molecules are stored in their neutral state inside the inter-fullerene interstices and are coordinated to the intercalated Li ions, forming Li–ND3 clusters. Li6C60 is found to absorb up to 36.8 wt% ND3, which corresponds to approximately 14 ammonia molecules per C60. The ammonia release, studied either in-situ or ex-situ by means of manometric analyses and differential scanning calorimetry, takes place in two main steps, at 350–410 K and 500–540 K, respectively. This corresponds to two clear 1st order structural phase transitions and the absorption process is partially reversible. These findings suggest that the system could be a good candidate for ammonia-storage applications.

Graphical abstract: Ammonia-storage in lithium intercalated fullerides

Back to tab navigation

Supplementary files

Publication details

The article was received on 10 Jul 2015, accepted on 07 Sep 2015 and first published on 09 Sep 2015


Article type: Paper
DOI: 10.1039/C5TA05226B
Author version
available:
Download author version (PDF)
Citation: J. Mater. Chem. A, 2015,3, 21099-21105
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Ammonia-storage in lithium intercalated fullerides

    D. Pontiroli, D. D'Alessio, M. Gaboardi, G. Magnani, C. Milanese, S. G. Duyker, V. K. Peterson, N. Sharma and M. Riccò, J. Mater. Chem. A, 2015, 3, 21099
    DOI: 10.1039/C5TA05226B

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements