Stöber-like method to synthesize ultralight, porous, stretchable Fe2O3/graphene aerogels for excellent performance in photo-Fenton reaction and electrochemical capacitors†
Abstract
We report three-dimensional (3D) graphene-based hybrids of Fe2O3 nanocrystals grown in situ on graphene aerogels (Fe2O3/GAs) by a Stöber-like method. Compared with other reported Fe2O3/3D-graphene, Fe2O3/GAs have outstanding mechanical strength, high elasticity, ultralow mass, excellent electrical conductivity, good oil absorption capacity and a dispersion of nanoparticles. They have a 3D network structure with a high surface area of 316 m2 g−1 and physicochemical stability. 3D-GAs can inhibit the loss of Fe2+ and stabilize the conversion of Fe3+/Fe2+ in the photo-Fenton reaction. Compared with Fe2O3 and Fe2O3/2D-graphene (Fe2O3/GR), Fe2O3/GAs exhibit an ultrastable, solar-driven Fenton activity over a wide pH range of 3.5–9.0 for the first time. In addition, the highly-dispersed, nanosized Fe2O3 on the surface of the GAs makes the composite highly suitable for use in electrochemical capacitors. Although the Fe2O3/GAs only contain 18.3 wt% Fe2O3, they still yield a high and stable capacitance (151.2 F g−1) at a high discharge current density of 10 A g−1, which is better than that of Fe2O3/GR (93.6 F g−1).