UV-controlled shape memory hydrogels triggered by photoacid generator†
Abstract
Light-induced shape memory polymers represent a class of stimuli-responsive materials that can recover their permanent shapes from temporarily trapped ones upon exposure to light illumination. Although much effort has been devoted to developing various light-responsive shape memory polymers, fabrication of such a light-responsive shape memory hydrogel still remains a challenge compared to neat polymers in their dry state. Herein, we developed a facile and general strategy to endow conventional hydrogel systems with ultraviolet (UV)-controlled shape memory performance simply using a photoacid generator (PAG) as a trigger. The process involves shape fixity through coordination interaction between imidazole groups and metal ions, and shape recovery by switching off the complexation via PAG photolysis reaction which leads to the protonation of imidazole groups. Furthermore, this convenient strategy is proved to be applicable to other pre-existing hydrogels such as a boronate ester cross-linked melamine–poly(vinyl alcohol) (PVA) hydrogel. We believe this method could provide a new opportunity with regard to the design and practical application of light-controlled shape memory hydrogels.