Issue 56, 2015

Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production

Abstract

Nowadays, microbial lipids are employed as the feedstock for biodiesel production, which has attracted great attention across the whole world. Malic enzyme (ME) is a key enzyme regulating the lipid accumulation process in oleaginous microorganisms. It catalyzes the oxidative decarboxylation of L-malate to pyruvate and CO2 with concomitant reduction of NADP+ to NADPH, supplying the reducing power for fatty acid biosynthesis. The extent of lipid accumulation in some fungi is identified to be controlled by ME acting as the sole source of NADPH. This review covers related research about molecular characterization and biochemical properties of MEs from various sources, and summarizes several possible modulators that affect ME activity during the lipid production process. If those harmful effects on ME activity throughout the lipid accumulation can be eliminated, more lipids can be produced. In addition, recent progress in overexpression of the ME gene for lipid biosynthesis is discussed. Quite a few successful stories in lipid overproduction by homologous or heterogenous overexpression of ME have occurred in some transformed microbial strains, indicating that ME is a promising target for gene transformation. However, the role of ME in the regulation of lipid biosynthesis is challenging in some cases.

Graphical abstract: Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production

Article information

Article type
Review Article
Submitted
16 Mar 2015
Accepted
13 May 2015
First published
14 May 2015

RSC Adv., 2015,5, 45558-45570

Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production

Y. Liang and J. Jiang, RSC Adv., 2015, 5, 45558 DOI: 10.1039/C5RA04635A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements