Issue 8, 2015

Shell decoration of hydrothermally obtained colloidal carbon spheres with base metal nanoparticles

Abstract

The preparation of base metal nanoparticles supported on the shell of colloidal carbon spheres (CCS) is reported. Hydrothermal treatment of a sucrose solution gave conglomerates of ca. 30 μm of CCS (diameter 2–8 μm), which consist of a hydrophobic core with a hydrophilic shell due to the presence of oxygen containing functional groups. The CCS were loaded by wet impregnation with various metal salts (copper, nickel, cobalt, iron). Subsequent pyrolysis under inert conditions at T = 800 °C led to the carbothermal reduction of the impregnated metal salts by the support material. The base metal nanoparticles (size ca. 35–70 nm) are supported on the circumference of the CCS in line with its core–shell structure. Moreover, in the case of nickel, cobalt and iron nanoparticles, all capable of forming metastable metal carbides, the carbonised shells are converted into nanostructures of graphitic carbon, viz., catalytic graphitisation occurs. The spheres were characterised by scanning- and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, elemental analysis, infrared spectroscopy and thermogravimetric analysis.

Graphical abstract: Shell decoration of hydrothermally obtained colloidal carbon spheres with base metal nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2015
Accepted
30 Jun 2015
First published
01 Jul 2015

New J. Chem., 2015,39, 6593-6601

Author version available

Shell decoration of hydrothermally obtained colloidal carbon spheres with base metal nanoparticles

J. Hoekstra, A. M. Beale, F. Soulimani, M. Versluijs-Helder, J. W. Geus and L. W. Jenneskens, New J. Chem., 2015, 39, 6593 DOI: 10.1039/C5NJ00804B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements