Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2015
Previous Article Next Article

Evaluating the PAS-SIM model using a passive air sampler calibration study for pesticides

Author affiliations

Abstract

The main objective of this study was to evaluate the performance of a model for simulating the uptake of various pesticides on passive air samplers (PAS). From 2006–2007 a series of PAS using XAD-resin were deployed at Egbert, a rural agricultural site in southern Ontario, Canada, to measure the uptake of pesticides for time periods ranging from two months to one year. A continuous increase in sequestered amounts was observed for most pesticides, except for trifluralin and pendimethalin, which could conceivably be subject to substantial degradation inside the sampler. Continuous low-volume active air samples taken during the same period, along with data on weather conditions, allowed for the simulation of the uptake of the pesticides using the model (PAS-SIM). The modelled accumulation of pesticides on the PAS over the deployment period was in good agreement with the experimental data in most cases (i.e., within a factor of two) providing insight into the uptake kinetics of this type of sampler in the field. Passive sampling rates (PSR, m3 d−1) were determined from the empirical data generated for this study using three different methods and compared with the PSRs generated by the model. Overall, the PAS-SIM model, which is capable of accounting for the influence of temperature and wind variations on PSRs, provided reasonable results that range between the three empirical approaches employed and well-established literature values. Further evaluation and application of the PAS-SIM model to explore the potential spatial and temporal variability in PAS uptake kinetics is warranted, particularly for established monitoring sites where detailed meteorological data are more likely to be available.

Graphical abstract: Evaluating the PAS-SIM model using a passive air sampler calibration study for pesticides

Back to tab navigation

Supplementary files

Article information


Submitted
17 Mar 2015
Accepted
05 Jun 2015
First published
09 Jun 2015

This article is Open Access

Environ. Sci.: Processes Impacts, 2015,17, 1228-1237
Article type
Paper
Author version available

Evaluating the PAS-SIM model using a passive air sampler calibration study for pesticides

A. R. Restrepo, S. J. Hayward, J. M. Armitage and F. Wania, Environ. Sci.: Processes Impacts, 2015, 17, 1228
DOI: 10.1039/C5EM00122F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements