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ENVIRONMENTAL IMPACT 12 

Passive air samplers are frequently deployed in the field in order to monitor ambient 13 

concentrations of various contaminants in the atmosphere.  Although the basic principles 14 

underlying the accumulation of organic chemicals on passive air samplers are well-established, 15 

interpretation of monitoring data is complicated by varying ambient concentrations and 16 

meteorological conditions over time.  This study reports on the performance of a modeling tool 17 

(PAS-SIM) for simulating the accumulation of organic chemicals on XAD-2 passive air samplers 18 

using a calibration study for pesticides.  The modelled accumulation of pesticides on the PAS 19 

was in good agreement with the experimental data in most cases (i.e., within a factor of two) 20 

providing insight into the uptake kinetics of this type of sampler in the field.     21 
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ABSTRACT 12 

The main objective of this study was to evaluate the performance of a model for simulating the 13 

uptake of various pesticides on passive air samplers (PAS).  From 2006-2007 a series of PAS 14 

using XAD-resin were deployed at Egbert, a rural agricultural site in southern Ontario, Canada, 15 

to measure the uptake of pesticides for time periods ranging from two months to one year. A 16 

continuous increase in sequestered amounts was observed for most pesticides, except for 17 

trifluralin and pendimethalin, which could conceivably be subject to substantial degradation 18 

inside the sampler. Continuous low-volume active air samples taken during the same period, 19 

along with data on weather conditions, allowed for the simulation of the uptake of the pesticides 20 

using the model (PAS-SIM). The modelled accumulation of pesticides on the PAS over the 21 

deployment period was in good agreement with the experimental data in most cases (i.e., within a 22 

factor of two) providing insight into the uptake kinetics of this type of sampler in the field. 23 

Passive sampling rates (PSR, m3 d-1) were determined from the empirical data generated for this 24 

study using three different methods and compared with the PSRs generated by the model. 25 

Overall, the PAS-SIM model, which is capable of accounting for the influence of temperature 26 

and wind variations on PSRs, provided reasonable results that range between the three empirical 27 

approaches employed and well-established literature values. Further evaluation and application of 28 

the PAS-SIM model to explore the potential spatial and temporal variability in PAS uptake 29 

kinetics is warranted, particularly for established monitoring sites where detailed meteorological 30 

data are more likely to be available. 31 

32 
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INTRODUCTION 33 

Pesticides have long been identified as chemicals posing a threat to environmental health. They 34 

are often detected in regions remote from their original use, reflecting relatively high application 35 

rates and long-range transport potential (LRTP).1-6 Because the atmosphere plays a significant 36 

role in pesticide transport and fate, numerous studies report the levels of pesticides in ambient 37 

air.2-5, 7 Although many sampling methods are available, passive air samplers (PAS) are often 38 

chosen for deployments over long periods at multiple sites, due to their low cost and maintenance 39 

requirements. To calculate volumetric air concentrations from the amount of a chemical 40 

quantified in a PAS, it is necessary to employ an estimated passive sampling rate (PSR). PSRs 41 

are often calculated as part of a calibration study, using independently derived air concentrations 42 

from active air samplers (AAS). Most calibrations rely on intermittent active sampling although 43 

recently continuous active samplers have been used, but only for relatively short periods.8-12 44 

Previous work suggests that sampling rates of PASs can vary with climate and between 45 

compounds and different approaches have been proposed to account for this effect.13-15  To date 46 

however, calibrations yielding PAS sampling rates for pesticides are limited, especially in 47 

temperate regions and over extended deployment periods.11     48 

Recently, the PAS-SIM model was presented as a method for simulating the behaviour of organic 49 

chemicals on PAS using divinylbenzene-styrene-co-polymeric resin (XAD-2) as sorbent under 50 

different exposure scenarios.16, 17 One potential use of the PAS-SIM model is to estimate PSRs 51 

prior to actual deployments, based only on the meteorological conditions (i.e., temperature, wind 52 

speed) at the sampling sites and the chemical properties of the target analytes.  The model’s 53 

performance has been evaluated for PCBs and PAHs but not for pesticides.  Accordingly, the 54 

main objective of this study is to assess the performance of the PAS-SIM model for simulating 55 

the uptake kinetics of various pesticides on PAS.  PAS using XAD-2 as sorbent (hereinafter 56 

referred to as XAD-PAS) were deployed for up to one year, alongside a continuous active air 57 

sampler. The active air sampling data in combination with the PAS-SIM model were used to 58 

simulate the uptake of pesticides in the XAD-PAS. Sampling rates for a range of pesticides were 59 

derived by using the PAS-SIM model and compared with those obtained by direct data 60 

calibration methods.  Three empirical methods for estimating PSRs were considered.  A 61 

secondary objective of this study is therefore to provide guidance on the appropriateness and 62 
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applicability of these methods for deriving empirical sampling rates from calibration studies 63 

using XAD-PAS.   64 

METHODS 65 

Field Calibration Study. From March 2006 to February 2007, ambient air was sampled at the 66 

Center for Atmospheric Research Experiments (CARE), in Egbert, Ontario, Canada (44°13'52"N, 67 

79°46'59"W) using a low-volume active air sampler (LV-AAS) and a set of 10 XAD-PAS. The 68 

LV-AAS operated continuously for consecutive 14-day periods, while all XAD-PAS were set out 69 

in March 2006 and then retrieved in pairs, in approximately 2-month intervals (4-month interval 70 

for the final pair retrieved in February 2007). Accordingly, there are five XAD PAS deployment 71 

lengths, i) two months (March 1–April 27, 2006), ii) four months (March 1–June 30, 2006), iii) 72 

six months (March 1–September 1, 2006), iv) eight months (March 1–October 27, 2006) and iv) 73 

twelve months (March 1, 2006–February 27, 2007).  The LV-AAS sampling has been detailed in 74 

previous papers.5, 11 Briefly, a BGI-400S LV-AAS (BGI Inc.) was used to aspirate air through a 75 

PUF-XAD-PUF sandwich (5 g of XAD, between 2 cm x 3 cm polyurethane foam, PUF). The 76 

pump was calibrated to sample 2.9±0.2 m3·d-1 resulting in a sample volume of 40.6 m3 for each 77 

two-week sample. The sampler was not equipped with a glass fibre filter (GFF) and hence no 78 

distinction between gaseous and particle-bound fractions can be made. The XAD-PAS, based on 79 

the design described by Wania et al.16, consists of a stainless steel mesh cylinder (10 cm long) 80 

containing pre-cleaned XAD-2 resin, which is protected from precipitation by a stainless steel 81 

housing designed to minimize the effect of wind speed on the sampling rate.    82 

Chemical Analysis. The list of chemicals measured is provided in the Electronic Supplementary 83 

Information (ESI, Section S1) and includes both Current Use Pesticides (CUPs) and Historic Use 84 

Pesticides (HUPs). The majority of the LV-AAS data were reported in a 2010 publication5 85 

whereas only the data for the XAD-PAS pair deployed for 12 months have been reported 86 

previously.11 LV-AAS and XAD-PAS samples were extracted and analyzed using the same basic 87 

methods5, 7, 11, 16  Briefly, the samples were spiked with d14-trifluralin and d10-chlorpyrifos to 88 

assess method recovery and Soxhlet-extracted using dichlormethane for 24 hours. Extracts were 89 

reduced in volume, solvent exchanged into iso-octane, and analyzed by gas chromatography with 90 

a mass-selective detector in either negative chemical ionization (NCI) or electron ionization (EI) 91 

mode.  Additional details of the analytical methods are reported in Section S1 in the ESI.    92 
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Empirical Sampling Rate Derivation. Passive sampling rates were obtained from the field 93 

calibration data using three different methods. Method 1 uses the following equation: 94 

��� = 	
�

��	
��� ∙ �
 (1) 

where PSR is the passive sampling rate (m3 d-1), m is the amount of chemical sequestered on the 95 

sampling medium (mol), CLV-AAS the average air concentration during deployment (based on the 96 

LV-AAS data) (mol m-3) and t the deployment time (day). Thus sampling rates can be determined 97 

for each XAD-PAS using the average CLV-AAS during its deployment, ranging from 2 to 12 98 

months. Equation (1) can also be rearranged to: 99 

� = ���(��	
��� ∙ �) (2) 

PSR is then derived as the slope of the linear regression of the sequestered amount m against the 100 

product of CLV-AAS and time (Method 2). 101 

Methods 1 and 2 assume the PSR to be constant during deployment, but previous research 102 

demonstrated that PSRs can vary with temperature and wind speed.7, 13-15, 18  To address this 103 

concern, a third method was used to account for seasonal variations. Sampling rates during each 104 

two months interval between retrievals were derived from the increase in the amount captured by 105 

subsequently retrieved XAD-PAS and the average air concentration (CLV-AASi), during the 106 

interval (Method 3). 107 

��� = 	
�� −��
�

(��	
���)� ∙ ��
 (3) 

where mi is the amount of pesticide sequestered by the XAD-PAS at the time of retrieval, mi-1 is 108 

the amount sequestered at the previous retrieval (i.e. two months earlier) and ti the deployment 109 

interval. 110 

The use of depuration compounds has also been proposed as a method to estimate PSRs from 111 

PAS data (in the absence of AAS), based on the loss of the spiked compound over the 112 

deployment period.9, 19, 20  This approach is predicated on the assumption that uptake of target 113 

analytes and loss of the depuration compounds are subject to the same transport resistances, 114 

where typically it is assumed that transport across the air-side boundary layer is rate limiting.  As 115 

discussed previously, transport through the porous medium on the sampler-side is an important 116 
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consideration and hence these assumptions may not be valid.21, 22 Additional research is required 117 

to better understand the use of depuration compounds for estimating PSRs as a function of 118 

chemical properties and environmental conditions.  Regardless, because the XAD-PAS deployed 119 

in this study were not spiked with depuration compounds, this method cannot be applied to the 120 

current data.        121 

PAS-SIM Model Application and Evaluation. Uptake of selected pesticides on XAD-PAS was 122 

simulated using the PAS-SIM model17 using physical-chemical property data and site-specific 123 

meteorological data as inputs. The following compounds were simulated: alachlor, atrazine, cis-124 

chlordane, trans-chlordane, chlorothalonil, DCPA (Dimethyl tetrachloroterephthalate, Dacthal), 125 

disulfoton, endosulfan I, endosulfan II, endosulfan sulfate, hexachlorobenzene (HCB), 126 

α-hexachlorocyclohexane (α-HCH), γ-HCH, metolachlor, trans-nonachlor, pendimethalin and 127 

trifluralin. Daily weather conditions for temperature used Egbert CARE facility data whereas 128 

wind speed was retrieved from Toronto Pearson International Airport (70 km away from the 129 

sampling site). These inputs are documented in the Supporting Information of the original PAS-130 

SIM model publication.17 Pesticide properties (e.g., molecular weight) were retrieved from the 131 

EURL Data Pool.23  Sampler-air (KSA) and aerosol-air (KQA) partition coefficients at 25 °C were 132 

calculated using poly-parameter linear free energy relationships (pp-LFERs) and solute 133 

descriptors.24-29 The temperature dependence of the partition coefficients was estimated using the 134 

internal energy of phase change (∆Uij, kJ/mol) according to previously reported equations.29, 30  If 135 

necessary, solute descriptors were estimated using ACD/Labs software (Absolv in ACD/ADME 136 

Suite v. 5.0.8). Model inputs, solute descriptors and partition coefficients can be found in Section 137 

S2 in the ESI.  138 

The LV-AAS data was used as an input to the model, and the output (i.e., the amount m 139 

sequestered in the PAS) was compared against the empirical data obtained from the deployed 140 

XAD-PAS. The normalized residuals error (NRE) in the model estimation was calculated using 141 

the following equation31: 142 

��� =	
2����� −�������
�����. −����� 

 (4) 

where ���� (ng) stands for the experimental value obtained and ����! (ng) are the model 143 

outputs with x being the assumed thicknesses of the stagnant boundary layer between the ambient 144 
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air and the sampler. As done for previous simulations17, three different boundary layer 145 

thicknesses (assuming negligible wind speed) were considered: 10 mm is the reference value, and 146 

7.5 mm and 15 mm are a standard deviation away from this value. Section S3 in the SI gives 147 

additional details about the model error analysis.  Model performance was also assessed using 148 

what is termed the Factor of Agreement (FoA), which is simply the average ratio of measured 149 

and modeled amounts of chemical on the XAD-PAS. 150 

RESULTS AND DISCUSSION 151 

Pesticide Monitoring by XAD-PAS and LV-AAS. The sequestered amounts in each of the 152 

XAD-PAS deployed at Egbert in 2006-2007 are reported in Section S4 in the ESI, while the 153 

recovery corrected amounts of pesticides can be found in Section S5, and the averages in Section 154 

S6. Seventeen pesticides (alachlor, atrazine, chlorothalonil, DCPA, disulfoton, endosulfan I, 155 

endosulfan II, endosulfan sulfate, metolachlor, pendimethalin and trifluralin, cis-chlordane, trans-156 

chlordane, HCB, α-HCH, γ-HCH, and trans-nonachlor) were consistently detected. Some 157 

pesticides, including chlorothalonil, DCPA, endosulfan I, pendimethalin, trifluralin, HCB, 158 

α-HCH and γ-HCH, were detected even after the shortest deployment time of two months. The 159 

other pesticides may have levels below the detection limit of the analytical methods in this early 160 

spring period due the strong seasonal variability in pesticide use. Data retrieved during these two 161 

months are in agreement with the LV-AAS measurements except for pendimethalin, as it was 162 

detected in the XAD-PAS but not in any LV-AAS. When estimating an air concentration from a 163 

PAS operating in the linear uptake phase, it is assumed that only negligible amounts of the 164 

chemicals accumulated by the sampler are lost during deployment.16 The sampling strategy was 165 

designed to assess the validity of this assumption for pesticides. A non-uniform increase with 166 

larger amounts of pesticide accumulating in the PAS between June and September than during 167 

winter is consistent with higher ambient air concentrations during the growing season as has been 168 

observed by active sampling.11 Pesticides which are not in current use (HUPs such as HCB, 169 

α-HCH, γ-HCH, cis-chlordane, trans-chlordane, and trans-nonachlor), on the other hand, show 170 

continuously and uniformly rising sequestered amounts throughout the year of deployment, 171 

consistent with a lack of significant seasonal change in air concentrations related to agricultural 172 

applications. The results for these chemicals allow us to assess whether or not equilibrium 173 

between the PAS sorbent XAD and the atmosphere was approached. If we assume that these 174 

‘historic-use’ pesticides have relatively constant concentrations in air, their net uptake in the PAS 175 
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would have decreased or approached zero if they had reached equilibrium; but they did not, even 176 

though the HUPs are among those with the lowest sampler uptake capacity (quantified by the 177 

sampler-air partition coefficients KSA, whose numerical values can be found in the ESI, Section 178 

S2) within the group of detected pesticides. Thus, we also can be confident that the other 179 

chemicals with higher sampler-air partition coefficients did not approach equilibrium during 180 

deployment either. 181 

On the other hand, whereas the LV-AAS air concentrations of pendimethalin and trifluralin 182 

remain elevated throughout the summer months (≥ 91 pg m-3 and 88 pg m-3  respectively), the 183 

empirical XAD-PAS data do not show continued uptake even though the amounts accumulated 184 

on the samplers (4.4 ng and 3.2 ng respectively) do not appear to reflect equilibrium partitioning 185 

at any time. For example, the expected amount of trifluralin on the XAD-PAS samplers deployed 186 

for this study at equilibrium with an air concentration of 20 pg m-3 at 30 °C is 13.2 ng. However, 187 

the measured amount of trifluralin on the XAD-PAS was ≤ 4.2 ng throughout the summer (i.e., 188 

well below the amount corresponding to thermodynamic equilibrium with the ambient air). 189 

Accordingly, the apparent loss of pendimethalin and trifluralin from the passive samplers cannot 190 

be explained by fluctuations in ambient air concentrations or enhanced volatilization in the 191 

summer caused by warmer temperatures because the sampler is below the expected equilibrium. 192 

Although both of these compounds exhibit relatively large 2nd-order OH radical reaction rate 193 

constants (kOH, as estimated using the EPISUITE AOPWIN v1.92 module), so do some of the 194 

other compounds sampled here (e.g., atrazine, disulfoton). As the experimental PAS data for 195 

these other compounds is broadly consistent with expectations, it does not seem likely that 196 

reaction with OH radicals in the pore space of the sampler alone can explain the apparent 197 

discrepancies for pendimethalin and trifluralin. Moreover, the mass fraction of the compounds in 198 

the pore air of the sampler is negligible in comparison to the sorbed fraction.  An alternative 199 

explanation for these observations is that degradation of the compounds within or sorbed to the 200 

passive sampler is facilitated by the sampler medium itself. For example, it was recently reported 201 

that XAD-2 ‘artificially transformed’ chlorpyrifos to its oxygenated analogue chlorpyrifos-oxon 202 

to a substantial extent whereas PUF used in the same study did not.32 Because pendimethalin and 203 

trifluralin have a similar dinitro-aniline structure, they both may be prone to the same type of 204 

reaction process(es). Additional studies are required to explore this hypothesis experimentally; 205 

PAS-SIM model simulations incorporating this process are presented below. Because of the 206 

discrepancy identified above, care must be taken when interpreting the air concentrations of 207 
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pendimethalin and trifluralin, as the estimated air concentrations using the sampler data may be 208 

inaccurate.  209 

PAS-SIM Model Output and Evaluation. Typical results for the simulated uptake of pesticides 210 

are shown in Figures 1 to 3. Concentrations of pesticides in air in Egbert measured by LV-AAS 211 

from March 1st 2006 to February 27th 2007, shown in red, were used, alongside with temperature, 212 

wind speed and chemical properties, as inputs to obtain the curves below each plot. The circles 213 

are the experimental values with their variability indicated by the error bars. The lines represent 214 

model results using different assumptions regarding the thickness of the stagnant air boundary 215 

layer: the black dotted line is the model output using a 7.5 mm thick stagnant air boundary layer; 216 

the dashed line stands for 10 mm thickness and the solid line for 15 mm thickness. As introduced 217 

above, model performance was quantified using the NRE (Eq. 4).  Three levels of agreement 218 

between measurements and PAS-SIM results are defined here, i) good agreement, ii) systematic 219 

bias, and iii) no agreement. Agreement was judged acceptable if the absolute NRE was below 2, 220 

i.e., if the model output was within two standard deviations (±2σ) of the experimental data. It is 221 

important to note that NRE (and FoA) results should not be interpreted as absolute criteria given 222 

that uncertainty/bias in the LV-AAS and empirical XAD-PAS data affects the performance of the 223 

model.  For example, both positive and negative bias could have been introduced to the empirical 224 

XAD-PAS data through the recovery correction, which for all 17 compounds was based on only 225 

two internal standards (d14-trifluralin and d10-chlorpyrifos).  Further evaluation of the PAS-SIM 226 

model by other researchers using other calibration data sets is encouraged.   227 

Of the 17 pesticides detected, acceptable agreement was found for eight compounds, seven 228 

pesticides were systematically underestimated, and there was no agreement for two pesticides. 229 

The compounds with acceptable agreement between model output and the empirical data were 230 

alachlor, atrazine, cis-chlordane, trans-chlordane, DCPA, disulfoton, metolachlor, and trans-231 

nonachlor. The emission profiles of these compounds are diverse, from pesticides with a strong 232 

seasonal variability to others with seemingly random fluctuations over time. For some pesticides 233 

in this group (DCPA, disulfoton, trans-nonachlor), not all solute descriptors had been reported in 234 

the literature so estimated values were used (i.e., Absolv output). In the case of trans-nonachlor, 235 

all the descriptors were estimated, but its NRE absolute value is less than 0.1. These results 236 

suggest that altogether the solute descriptor estimation, the pp-LFERs and the PAS-SIM model 237 
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are a good and rugged assembly, able to make accurate predictions even for compounds with 238 

little experimental property data available. Examples are shown in Figure 1. 239 

(FIGURE 1) 240 

When the modeled and measured shape of the uptake curve was similar, but the NRE was 241 

systematically greater than 2σ, model results, shown in Figure 2, were judged systematically 242 

biased.  This was the case for HCB, α- and γ-HCH, the endosulfans and chlorothalonil.  For the 243 

pesticides in this study, the bias was always positive, suggesting that the model is prone to 244 

underestimating the residues on XAD-PAS. The extent of bias can be expressed by the number of 245 

standard deviations n. For example, an n of approximately 3 for HCB means that the 246 

experimental values usually were three standard deviations above the predicted values. The 247 

common range for n was between 2 and 5, with the noticeable exception of chlorothalonil (n ≈ 248 

16). Compounds with the lowest systematic bias were the endosulfans, whose structure is quite 249 

similar to the chlordanes, for which acceptable agreement was found (Figure 1). The model bias 250 

also can be expressed by a factor of agreement (FoA), which was a factor of 2 for almost all 251 

compounds, indicating that modeled amounts (m) are approximately half of the experimental 252 

values. For chlorothalonil the modeled amounts are only a fifth of the empirical values obtained 253 

and hence the FoA is 5. The blue lines in Figure 2 show a fitted estimation using the FoA as a 254 

correction factor for the values obtained by the model using 10 mm stagnant boundary layer. 255 

Accordingly, the values of the fitted estimates double the values obtained by the PAS-SIM model 256 

for all the compounds except for chlorothalonil, for which the fitted values are five times higher. 257 

(FIGURE 2) 258 

Uncertainty in the estimated sampler-air partition coefficients can be an important consideration 259 

for chemicals with relatively low values (i.e., log KSA ≤ 7.5 at 25 oC).  For example, model output 260 

for HCB and γ-HCH approaches the lower bound of the empirical XAD-PAS data if the log KSAs 261 

are increased by 1 order of magnitude.    The improved model performance reflects increased net 262 

uptake of the chemical (i.e., decreased volatilization) over the simulation period due to higher 263 

sorption capacity. Log KSA values greater than 9 did not substantially improve model 264 

performance.  Although the ppLFER method used to derive all KSA values is well-validated, the 265 

potential for errors remains.  As it may not be possible to know when the estimated KSAs are in 266 

fact biased low, this consideration could be taken into account as an uncertainty factor in the 267 
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interpretation of PAS-SIM outputs for more volatile compounds.  Bias in the estimation of the 268 

aerosol-air partition coefficient can also influence model performance if this property value is 269 

relatively large (i.e., estimated log KQA > 9), as the PAS-SIM model for XAD-2 assumes that the 270 

fraction of chemical bound to particulates is completely unavailable for uptake.17  Overestimation 271 

of log KQA can therefore lead to underestimation of the amount of chemical accumulated on the 272 

sampler in the model calculations because the available fraction is inaccurately quantified.  This 273 

aspect may partly explain the model performance for endosulfan II and endosulfan sulfate, given 274 

that the estimate log KQAs for these compounds are greater than nine (ESI, Section S2).  For the 275 

other pesticides, this consideration is not expected to be relevant.  Note that the PAS-SIM model 276 

assumptions are based on empirical XAD-PAS data for PAHs such as benzo(b)fluoranthene, 277 

benzo(a)pyrene and indeno(1,2,3-c,d)pyrene, compounds known to be predominantly particle-278 

bound under typical atmospheric conditions.  Low sampling efficiencies of particle-bound PAHs 279 

on PUF-PAS were also reported for a recent calibration study33 and the reliability of PAS for 280 

particle-bound compounds in general remains unclear.34     281 

Two compounds, trifluralin and pendimethalin, showed a completely different behavior in the 282 

model. While the overall NRE indicates significant agreement, the NRE itself has a tendency to 283 

have significant changes from extreme positive to extreme negative values (i.e., the low overall 284 

NRE is due to error cancellation). Consistent with the equilibrium-based calculations discussed 285 

above, the calculated fugacities35 in the sampler and ambient air over the course of the simulation 286 

(data not shown) indicate that the XAD-PAS should depurate these chemicals only towards the 287 

end of the simulation (Days 283-365), when the concentration of these chemicals in ambient air 288 

concentration becomes negligible. To explore the hypothesis of degradation within the sampler32, 289 

a 1st-order degradation rate constant applied to the sorbed phase (i.e., kdeg-PAS, d-1) was defined 290 

and fitted until the simulation shape resembled the experimental data obtained. In both cases, a 291 

rate constant of 0.0125 d-1 produced acceptable results in terms of shape, but underestimated the 292 

concentration by a factor of two, similar to the results obtained for HCHs and endosulfans. 293 

Illustrative predictions and their fitted curves are shown in Figure 3. 294 

(FIGURE 3) 295 

PSR estimation and model performance. Several methods were used to estimate the PSR of the 296 

XAD-PAS. A summary of the results can be found in Table 1.  Some examples depicting the 297 

values of PSRE given by the slopes are shown in Figure 4.  Detailed results of each calculation 298 
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method described in the Methods section above can be found in the ESI, Section S7 to S9. Note 299 

that PSRs were not calculated for pendimethalin and trifluralin because of the discrepancy 300 

between the LV-AAS and empirical XAD-PAS data. 301 

(TABLE 1) 302 

(FIGURE 4) 303 

The empirical PSR values (PSRE) for HCB, α-HCH and γ-HCH agree very well with values that 304 

were determined previously in the same region (Burnt Island and Point Petre, in central and 305 

southern Ontario, respectively).16 In contrast, the values are higher than those obtained under 306 

Arctic conditions (Alert)16, and lower than those from Costa Rica7, confirming the need for 307 

temperature-dependent calibration. These results support the use of Method 3 as an accurate way 308 

to obtain PSRE, despite its associated variability which is higher than the uncertainty obtained for 309 

the other two methods, largely because it accounts for the temperature-dependent variation in 310 

PSRE. The ratio of the average PSRE during the Spring-Summer (end of April-August) and Fall-311 

Winter (March-April, September-February) periods, PSRsummer and PSRwinter, respectively (data 312 

shown in the SI, Section S9), indicates that the sampling rates are an average of 40% higher 313 

during the warmest deployment periods. Thus Method 3 is likely the best estimate of the XAD-314 

PAS sampling rates over the entire year, as it most accurately accounts for the seasonal variations 315 

throughout the deployment.   However, as can be seen in Table 1, differences in the estimated 316 

PSREs via Methods 1–3 are often less than the associated uncertainties in the estimates and 317 

therefore, in practical terms, data availability (i.e., sampling intervals over deployment period) is 318 

the key factor.    319 

The wind speed adjusted sampling rates estimated by the PAS-SIM model for a 10 mm stagnant 320 

boundary layer (PSRW) also are presented in Table 1. As shown, the PSRW agrees with the 321 

empirical sampling rates derived from the field deployment in Egbert for the majority of 322 

chemicals, following from the model performance illustrated in Figures 1–3.  Note that the 323 

modeled PSRW is an inherent sampling rate that is independent of the concentration of the 324 

chemical in the air and amount of chemical on the sampler and only the sampler dimensions, 325 

meteorological conditions and the physicochemical properties are taken into account to calculate 326 

it.17  Because the information needed to calculate PSRW over time is often available, it can be 327 

estimated for any site prior to and during the deployment period to inform the interpretation of 328 

empirical XAD-PAS data. Such calculations could be particularly useful to probe site-to-site and 329 

Page 13 of 22 Environmental Science: Processes & Impacts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t



13 
 

year-to-year variations in passive air monitoring data. Parameterization of the model with the 330 

most detailed meteorological records available (e.g., temperature and wind speed at daily 331 

resolution) is recommended for this purpose, especially for sites experiencing substantial weather 332 

variability. 333 

CONCLUSIONS 334 

The main objective of this study was to evaluate the performance of the PAS-SIM model using a 335 

passive air sampler calibration study for pesticides.  Considering the potential uncertainty in input 336 

parameters (i.e., the LV-AAS data and partitioning property values) and empirical XAD-PAS 337 

data, the PAS-SIM model performed reasonably well for the majority of chemicals simulated in 338 

the study (e.g., FoA within a factor of two).  While additional model evaluations for any 339 

additional chemicals would be valuable, the relatively poor model performance for 340 

chlorothalonil, trifluralin and pendimethalin in particular demands further analyses. The apparent 341 

discrepancy between the LV-AAS and empirical XAD-PAS data for trifluralin and pendimethalin 342 

is of most interest because of the possibility that degradation of compound sorbed to the resin is a 343 

key consideration, as was reported for chlorpyrifos.32  For the other compounds simulated, the 344 

model evaluation suggests that the PAS-SIM model can be used to characterize the expected 345 

XAD-PAS sampling rates (PSRW) at any site for which meteorological data are available.  346 

Overall, the findings allow us to conclude that PAS-SIM is a useful modeling tool for pesticides 347 

that can enable a better understanding of PAS uptake kinetics under varying ambient air 348 

concentrations and meteorological conditions and provide insights facilitating an improved 349 

interpretation of empirical XAD-PAS data.  Application of the model prior to actual deployment 350 

of XAD-PAS may also allow researchers to develop sampling strategies more appropriate for the 351 

target analytes of interest and purposes of the monitoring campaign. 352 

A secondary objective was to further assess the appropriateness and applicability of three 353 

methods for deriving empirical sampling rates from calibration studies.  The selection of the most 354 

appropriate approach to quantify PSR depends on the availability of the data and the accuracy 355 

needed. Simple approaches (i.e., Method 1 or 2) may be sufficient to estimate the empirical 356 

sampling rate (PSRE) if the weather conditions or the pollutant emissions are expected to be 357 

relatively stable over the deployment period. When a site is expected to have strong seasonal or 358 

meteorological variability, Method 3 will likely yield a better estimate and is recommended if 359 

PAS were deployed and collected at appropriate intervals.  While empirical PSREs for target 360 
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compounds from a given site could be assumed to be valid for other sites with similar 361 

meteorological conditions, a more rigorous approach would be to use all available literature data 362 

to make an estimate by linear regression of the experimental PSR against a site-specific 363 

characteristic, e.g., temperature.36 Using multiple literature values has a real advantage over the 364 

extrapolation of a single empirical sampling rate. The main limitation for this approach may be 365 

the lack of data needed and/or the lack of congruence across that data.  As noted in the Methods 366 

section, the use of depuration compounds has been promoted as a method to estimate PSRs in the 367 

absence of concurrent AAS data but is subject to some uncertainty.21, 22  Although outside the 368 

scope of the current study, the PAS-SIM model can also be used to simulate the behaviour of 369 

depuration compounds under different meteorological conditions.  Simulated PSRs based on 370 

uptake scenarios and derived from depuration scenarios could then be compared and used to gain 371 

insight into potential error associated with the use of depuration compounds to estimate PSR 372 

using the current approach.  Such simulations are considered a priority for future applications of 373 

the PAS-SIM model.  Development of a PAS-SIM parameterization set for simulating the uptake 374 

of organic compounds on PUF-PAS is also desirable, given the widespread use of this type of 375 

PAS for field deployments. 376 
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FIGURES  450 

   

   

  

 

Figure 1. PAS-SIM results for pesticides showing good agreement with measured uptake curves.  451 

The red lines (upper portion of each panel) are the empirical LV-AAS data (pg m-3); the black 452 

lines (dotted, dashed and solid) are PAS-SIM model output (ng per sampler) under different 453 

assumptions regarding the thickness of the stagnant air boundary layer (7.5, 10 and 15 mm).  The 454 

open circles with error bars are the empirical XAD-PAS data (ng per sampler).   455 
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Figure 2. PAS-SIM simulation results for pesticides with systematic bias from experimental data.  456 

The red lines (upper portion of each panel) are the empirical LV-AAS data (pg m-3); the black 457 

lines (dotted, dashed and solid) are PAS-SIM model output (ng per sampler) under different 458 

assumptions regarding the thickness of the stagnant air boundary layer (7.5, 10 and 15 mm).  The 459 

open circles with error bars are the empirical XAD-PAS data (ng per sampler).  The blue line is a 460 

fitted estimated based on the calculated Factor of Agreement (FoA).   461 
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Figure 3. PAS-SIM model output for compounds with no agreement.  The red lines (upper 462 

portion of each panel) are the empirical LV-AAS data (pg m-3); the black lines (dotted, dashed 463 

and solid) are PAS-SIM model output (ng per sampler) under different assumptions regarding the 464 

thickness of the stagnant air boundary layer (7.5, 10 and 15 mm).  The open circles with error 465 

bars are the empirical XAD-PAS data (ng per sampler).  The blue line is a fitted estimated using a 466 

calibrated rate constant for degradation of chemical sorbed to the XAD-2 resin (kdeg-PAS, 0.0125 d-467 
1)   468 

Methods 1 and 2 Method 3  
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Figure 4. Illustration of the calculation of passive sampling rates PSRE from empirical 469 

concentration data for alachlor, chlorothalonil, endosulfan and hexachlorobenzene using Method 470 

1 (PSRE for entire deployment period of each sampler is the slope of the solid lines in the left 471 

panels), Method 2 (PSRE is the slope of the dashed regression line on all samplers in left panels) 472 

and Method 3 (PSRE for each time interval between sampler retrievals is the slope of solid lines 473 

in right panels). 474 
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TABLES 475 

Table 1. Empirical passive sampling rates obtained from the field data using three different 476 

methods (PSRE) and wind speed adjusted sampling rates estimated by PAS-SIM (PSRW). 477 

Compound 
PSRE (m

3
 d
-1
) PSRW 

(m
3
 d
-1
) Method 1 Method 2 Method 3 

Alachlor 0.66 ± 0.07 0.63 ± 0.02 0.61 ± 0.09 0.54 

Atrazine 0.72 ± 0.06 0.70 ± 0.03 0.66 ± 0.10 0.61 

Chlorothalonil 2.27 ± 0.30 2.29 ± 0.09 1.90 ± 0.62 0.67 

cis-Chlordane 0.48 ± 0.06 0.43 ± 0.02 0.42 ± 0.10 0.50 

trans-Chlordane 0.56 ± 0.03 0.55 ± 0.01 0.54 ± 0.07 0.51 

DCPA 0.47 ± 0.09 0.42 ± 0.03 0.35 ± 0.13 0.57 

Disulfoton 0.68 ± 0.05 0.67 ± 0.03 0.65 ± 0.19 0.53 

Endosulfan I 0.89 ± 0.09 0.84 ± 0.04 0.78 ± 0.19 0.54 

Endosulfan II 0.67 ± 0.06 0.65 ± 0.03 0.62 ± 0.15 0.53 

Endosulfan sulfate 0.31 ± 0.01 0.31 ± 0.01 0.34 ± 0.06 0.55 

HCB 0.88 ± 0.10 0.86 ± 0.04 0.77 ± 0.33 0.67 

α-HCH 1.15 ± 0.18 1.06 ± 0.07 0.99 ± 0.32 0.64 

γ-HCH 0.93 ± 0.16 0.91 ± 0.04 0.88 ± 0.31 0.63 

Metolachlor 0.74 ± 0.04 0.72 ± 0.02 0.68 ± 0.10 0.50 

trans-Nonachlor 0.43 ± 0.04 0.41 ± 0.02 0.39 ± 0.08 0.52 
 478 
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