Exploring electron pair behaviour in chemical bonds using the extracule density†
Abstract
We explore explicit electron pair behaviour within the chemical bond (and lone pairs) by calculating the probability distribution for the center-of-mass (extracule) of an electron pair described by single localized orbitals. Using Edmiston–Ruedenberg localized orbitals in a series of 61 chemical systems, we demonstrate the utility of the extracule density as an interpretive tool in chemistry. By accessing localized regions of chemical space we simplify the interpretation of the extracule density and afford a quantum mechanical interpretation of “chemically intuitive” features of electronic structure. Specifically, we describe the localized effects on chemical bonds due to changes in electronegativities of bonded neighbours, bond strain, and non-covalent interactions. We show that the extracule density offers unique insight into electronic structure and allows one to readily quantify the effects of changing the chemical environment.