Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 23, 2014
Previous Article Next Article

Optically and electrically tunable graphene quantum dot–polyaniline composite films

Author affiliations

Abstract

Graphene quantum dot–polyaniline (PANI–GQD) composite films were synthesized by a chemical oxidation polymerization process. The optical properties of the PANI–GQD composite were studied by varying the mole concentration of PANI and the size of the GQDs. The Au/PANI–GQDs/ITO sandwich device was fabricated in order to investigate the transport properties of the composite. A stable hysteresis loop was observed in response to the applied voltage. By varying the PANI content and size of the GQDs, the area within the hysteresis loop and electrical conductance behavior of the device can be tuned in a controlled manner. Both the tunable luminescence and electrical hysteresis behavior are attributed to surface states of the GQDs. The PANI–GQD composite films are expected to find application in photonic devices.

Graphical abstract: Optically and electrically tunable graphene quantum dot–polyaniline composite films

Back to tab navigation

Supplementary files

Article information


Submitted
13 Mar 2014
Accepted
11 Apr 2014
First published
15 Apr 2014

J. Mater. Chem. C, 2014,2, 4526-4532
Article type
Paper
Author version available

Optically and electrically tunable graphene quantum dot–polyaniline composite films

C. M. Luk, B. L. Chen, K. S. Teng, L. B. Tang and S. P. Lau, J. Mater. Chem. C, 2014, 2, 4526
DOI: 10.1039/C4TC00498A

Social activity

Search articles by author

Spotlight

Advertisements