Issue 36, 2014

Solution-processed, indacenodithiophene-based, small-molecule organic field-effect transistors and solar cells

Abstract

Two indacenodithiophene-based molecules with different side chains, BTIDT-C6 and BTIDT-OC12, have been designed and synthesized for solution-processed, small-molecule organic solar cells (OSCs) donor materials. By optimizing the side chains, the hole mobility of the materials is modulated, which has been proven by the organic field-effect transistor (OFET) performances. Solar cells based on BTIDT-C6 show a power conversion efficiency (PCE) of 4.83%. To the best of our knowledge, this is the first report about indacenodithiophene-based, solution-processed, small-molecule OFETs, and it is also one of the highest PCE reports for the indacenodithiophene-based, solution-processed, small-molecule OSCs. This report makes indacenodithiophene-based small molecules the third type of high-efficiency (5% PCE), solution-processed, small-molecule OSCs donor materials, in addition to benzodithiophene (BDT) and dithienosilole (DTS).

Graphical abstract: Solution-processed, indacenodithiophene-based, small-molecule organic field-effect transistors and solar cells

Article information

Article type
Paper
Submitted
09 Apr 2014
Accepted
11 Jul 2014
First published
14 Jul 2014

J. Mater. Chem. C, 2014,2, 7523-7530

Solution-processed, indacenodithiophene-based, small-molecule organic field-effect transistors and solar cells

D. Liu, M. Xiao, Z. Du, Y. Yan, L. Han, V. A. L. Roy, M. Sun, W. Zhu, C. S. Lee and R. Yang, J. Mater. Chem. C, 2014, 2, 7523 DOI: 10.1039/C4TC00721B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements