Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries†
Abstract
Thermally reduced graphene oxide (rGO)-wrapped ZnMn2O4 nanorods have been successfully fabricated via a facile bottom-up approach. Characterization results show that porous ZnMn2O4 nanorods are uniformly wrapped by ultrathin rGO sheets. The unique structure of this rGO–ZnMn2O4 composite could facilitate both ion and electron diffusion, thus providing suitable characteristics of an anode material for high performance lithium-ion batteries. Specifically, the conductive rGO sheets could act as an efficient buffer to relax the volume changes from Li+ insertion/extraction, and enable the structural and interfacial stabilization of ZnMn2O4 crystals. As a consequence, a high and stable reversible capacity (707 mA h g−1 at 100 mA g−1 over 50 cycles) and an excellent rate capability (440 mA h g−1 at 2000 mA g−1) are achieved with this composite material.