Issue 1, 2014

New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application

Abstract

Two new alternating low band gap D–A copolymers with different acceptor structures of 4,8-bis-(5-bromothiophene-2-yl)-benzo[1,2,5]thiadiazole (P1) and 4,8-dithiophene-2-yl-benzo[1,2-c;4,5-c′]-bis-[1,2,5]thiadiazole (P2) and a common BDT donor segment have been synthesized under Stille reaction conditions and characterized. The polymers showed good solubility, broad absorption bands and optical band gaps of 1.62 eV and 1.16 eV for P1 and P2, respectively. Bulk heterojunction (BHJ) polymer solar cells based on P1 and P2 as electron donors and fullerene derivatives (PC60BM and PC70BM) as acceptor were fabricated and their photovoltaic response was investigated. The overall power conversion efficieny (PCE) achieved for BHJ solar cells based on P1:PC60BM, P2:PC60BM, P1:PC70BM and P2:PC70BM blends cast from THF solvent is about 2.17%, 0.80%, 3.45% and 1.19%, respectively. The higher PCE for the device based on P1 has been attributed to the high value of hole mobility for P1 as compared to P2 and a larger driving force i.e. LUMO–LUMO offset, for photo-induced charge transfer for P1:PCBM BHJ active layer. The PCE has been further increased up to 5.30% and 1.58% for P1:PC70BM and P2:PC70BM blends cast from DIO/THF solvent, which is attributed to the improved crystallinity and a more balanced charge transport in the device.

Graphical abstract: New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application

Article information

Article type
Paper
Submitted
31 Jul 2013
Accepted
01 Oct 2013
First published
03 Oct 2013

J. Mater. Chem. A, 2014,2, 155-171

New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application

M. L. Keshtov, D. V. Marochkin, V. S. Kochurov, A. R. Khokhlov, E. N. Koukaras and G. D. Sharma, J. Mater. Chem. A, 2014, 2, 155 DOI: 10.1039/C3TA12967E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements