Issue 30, 2014

Critical Casimir interactions around the consolute point of a binary solvent

Abstract

Spatial confinement of a near-critical medium changes its fluctuation spectrum and modifies the corresponding order parameter distribution, resulting in effective, so-called critical Casimir forces (CCFs) acting on the confining surfaces. These forces are attractive for like boundary conditions of the order parameter at the opposing surfaces of the confinement. For colloidal particles dissolved in a binary liquid mixture acting as a solvent close to its critical point of demixing, one thus expects the emergence of phase segregation into equilibrium colloidal liquid and gas phases. We analyze how such phenomena occur asymmetrically in the whole thermodynamic neighborhood of the consolute point of the binary solvent. By applying field-theoretical methods within mean-field approximation and the semi-empirical de Gennes–Fisher functional, we study the CCFs acting between planar parallel walls as well as between two spherical colloids and their dependence on temperature and on the composition of the near-critical binary mixture. We find that for compositions slightly poor in the molecules preferentially adsorbed at the surfaces, the CCFs are significantly stronger than at the critical composition, thus leading to pronounced colloidal segregation. The segregation phase diagram of the colloid solution following from the calculated effective pair potential between the colloids agrees surprisingly well with experiments and simulations.

Graphical abstract: Critical Casimir interactions around the consolute point of a binary solvent

Article information

Article type
Paper
Submitted
21 Mar 2014
Accepted
07 May 2014
First published
08 May 2014
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2014,10, 5510-5522

Author version available

Critical Casimir interactions around the consolute point of a binary solvent

T. F. Mohry, S. Kondrat, A. Maciołek and S. Dietrich, Soft Matter, 2014, 10, 5510 DOI: 10.1039/C4SM00622D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements