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Spatial confinement of a near-critical medium changes its fluctuation spectrum and modifies the
corresponding order parameter distribution, resulting in effective, so-called critical Casimir forces
(CCFs) acting on the confining surfaces. These forces are attractive for like boundary conditions of
the order parameter at the opposing surfaces of the confinement. For colloidal particles dissolved in
a binary liquid mixture acting as a solvent close to its critical point of demixing, one thus expects
the emergence of phase segregation into equilibrium colloidal liquid and gas phases. We analyze how
such phenomena occur asymmetrically in the whole thermodynamic neighborhood of the consolute
point of the binary solvent. By applying field-theoretical methods within mean-field approximation
and the semi-empirical de Gennes-Fisher functional, we study the CCFs acting between planar
parallel walls as well as between two spherical colloids and their dependence on temperature and
on the composition of the near-critical binary mixture. We find that for compositions slightly poor
in the molecules preferentially adsorbed at the surfaces, the CCFs are significantly stronger than at
the critical composition, thus leading to pronounced colloidal segregation. The segregation phase
diagram of the colloid solution following from the calculated effective pair potential between the
colloids agrees surprisingly well with experiments and simulations.

I. INTRODUCTION

Finite-size contributions to the free energy of a spa-
tially confined fluid give rise to an excess pressure, viz.,
an effective force per unit area acting on the confining
surfaces. This so-called solvation force depends on the
geometry of the confinement, the surface separation, the
fluid-fluid interactions, the substrate potentials exhibited
by the surfaces, and on the thermodynamic state of the
fluid [1]. The solvation force acquires a universal, long-
ranged contribution upon approaching the bulk critical
point of the fluid, as first pointed out by Fisher and de
Gennes [2]. This is due to critical order parameter fluctu-

ations which led to the notion of ‘critical Casimir forces’,
in analogy with the quantum-mechanical Casimir forces
which are due to quantum fluctuations of confined elec-
tromagnetic fields [3].

The important role of critical Casimir forces (CCFs)
for colloidal suspensions has implicitly been first rec-
ognized while studying experimentally aggregation phe-
nomena in binary near-critical solvents [4]. Numerous
other experimental studies followed aiming to clarify im-
portant aspects of the observed phenomenon, such as
its reversibility and the location of its occurrence in the
temperature - composition phase diagram of the solvent
(see, for example, Refs. [5–7] and references therein).
Measurements were performed mostly in the homoge-
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neous phase of the liquid mixture. They have demon-
strated that the temperature - composition (T, c) region
within which colloidal aggregation occurs is not sym-
metric about the critical composition cc of the solvent
mixture. Strong aggregation occurs on that side of the
critical composition which is rich in the component disfa-
vored by the colloids. More recently, reversible fluid-fluid
and fluid-solid phase transitions of colloids dissolved in
the homogeneous phase of a binary liquid mixture have
been observed [8–10]. These experiments also show that
the occurrence of such phase transitions is related to the
affinity of the colloidal surfaces for one of the two solvent
components as described above.

Various mechanisms for attraction between the col-
loids, which can lead to these phenomena, have been
suggested. The role of dispersion interactions, which
are effectively modified in the presence of an adsorption
layer around the colloidal particles, has been discussed in
Ref. [11]. A “bridging” transition, which occurs when the
wetting films surrounding each colloid merge to form a
liquid bridge [12], provides a likely mechanism sufficiently
off the critical composition of the solvent. However, in
the close vicinity of the bulk critical point of the solvent,
in line with the prediction by Fisher and de Gennes [2],
attraction induced by critical fluctuations should domi-
nate.

In the original argument by Fisher and de Gennes, the
scaling analysis for off-critical composition of the solvent
has not been carried out. Due to the lack of explicit re-
sults for the composition dependence of CCFs, for a long
time it has not been possible to quantitatively relate the
aggregation curves to CCFs. Rather, it was expected
that CCFs play a negligible role for off-critical composi-
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Critical Casimir interactions around the consolute point of a binary solvent

tions because away from cc the bulk correlation length,
which determines the range of CCFs, shrinks rapidly.
However, to a certain extent the properties of an aggre-
gation region can be captured by assuming the attraction
mechanism to be entirely due to CCFs. This has been
shown in a recent theoretical study which employs an
effective one-component description of the colloidal sus-
pensions [13]. Such an approach is based on the assump-
tion of additivity of CCFs and requires the knowledge
of the critical Casimir pair potential in the whole neigh-
borhood of the critical point of the binary solvent, i.e.,
as a function of both temperature and solvent composi-
tion close to (Tc, cc). In Ref. [13], it was assumed that
colloids are spherical particles all strongly preferring the
same component of the binary mixture such that they
impose symmetry breaking ((+,+)) boundary conditions
[14] on the order parameter of the solvent. Further, the
pair potential between two spherical particles has been
expressed in terms of the scaling function of the CCFs be-
tween two parallel plates by using the Derjaguin approxi-
mation [15]. The dependence of the CCFs on the solvent
composition translates into the dependence on the bulk
ordering field hb conjugate to the order parameter (see
Eq. (A4) in the first part of Ref. [13]). For the parallel-
plate (or film) geometry in spatial dimension D = 3, the
latter has been approximated by the functional form ob-
tained from Ginzburg-Landau theory in the mean-field
approximation (i.e., for D = 4). The scaling functions
of the CCFs resulting from these approximations have
not yet been reported in the literature. We present them
here for a wide range of parameters. In order to assess
the quality of the approximations adopted in Ref. [13]
we calculate the scaling functions of the CCFs by using
alternative theoretical approaches and compare the cor-
responding results.

In this spirit, one can estimate how well the mean-field
functional form, which is exact in D = 4 (up to loga-
rithmic corrections), approximates the dependence on hb

of CCFs for films in D = 3 by comparing it with the
form obtained from the local-functional approach [16] in
D = 3. We use the semi-empirical free energy functional
developed by Fisher and Upton [16] in order to extend the
original de Gennes-Fisher critical-point ansatz [2]. Upon
construction, this functional fulfills the necessary ana-
lytic properties as function of T and a proper scaling be-
havior for arbitrary D. The extended de Gennes-Fisher
functional provides results for CCFs in films with (+,+)
boundary conditions at hb = 0, which are in a good agree-
ment with results from Monte Carlo simulations [17]. A
similar local-functional approach proposed by Okamoto
and Onuki [18] uses a renormalized Helmholtz free en-
ergy instead of the Helmholtz free energy of the linear
parametric model used in Ref. [17]. Such a version does
not seem to produce better results for the Casimir am-
plitudes [18]. This ‘renormalized’ local-functional theory
has been recently applied to study the bridging transition
between two spherical particles [19]. Some results for the
CCFs with strongly adsorbing walls and hb 6= 0 obtained

within mean-field theory and within density functional
theory in D = 3 have been presented in Refs. [20] and
[21], respectively. These results are consistent with the
present ones.

We also explore the validity of the Derjaguin approxi-
mation for the mean-field scaling functions of the CCFs,
focusing on their dependence on the bulk ordering field.
For that purpose, we have performed bona fide mean-field
calculations for spherical particles, the results of which
can be viewed as exact for hypercylinders in D = 4 or
approximate for two spherical particles in D = 3.

This detailed knowledge of the CCFs as function of T
and hb is applied in order to analyze recently published
experimental data for the pair potential and the segrega-
tion phase diagram [10] of poly-n-isopropyl-acrylamide
microgel (PNIPAM) colloidal particles immersed in a
near-critical 3-methyl-pyridine (3MP)/heavy water mix-
ture.

Our paper is organized such that in Sec. II we dis-
cuss the theoretical background. In Sec. III A, results
for CCFs for films are presented. These results as ob-
tained from the field-theoretical approach within mean-
field approximation are compared with those stemming
from the local functional approach. We discuss how the
dependence of the CCFs on the bulk ordering field hb

changes with the spatial dimension D. Section III B is
devoted to the CCF between spherical particles, where
we also probe the reliability of the Derjaguin approxima-
tion. In Sec. IV our theoretical results are confronted
with the corresponding experimental findings and simu-
lations. We provide a summary in Sec. V.

II. THEORETICAL BACKGROUND

For the demixing phase transition of a binary liquid
mixture, the order parameter φ is proportional to the de-
viation of the concentration c = ̺A−̺B from its value cc
at the critical point, i.e., φ ∼ c−cc; here ̺α, α ∈ {A,B},
are the number densities of the particles of species A and
B, respectively. The bulk ordering field hb, conjugate to
this order parameter, is proportional to the deviation of
the difference ∆µ = µA − µB of the chemical potentials
µα, α ∈ {A,B}, of the two species from its critical value,
i.e., hb ∼ ∆µ − ∆µc. We note, that the actual scaling
fields for real fluids are linear combinations of hb and the
reduced temperature t = (Tc − T ) /Tc [t = (T − Tc) /Tc]
for a lower [upper] critical point.

Close to the bulk critical point, the bulk correlation
length attains the scaling form

ξ (t, hb) = ξtI
(D)
± (|Σ| = ξt/ξh) , (1)

where the universal bulk scaling function I
(D)
± satisfies

I
(D)
± (|Σ| → 0) = 1 and I

(D)
± (|Σ| → ∞) = |Σ|−1

. The

functional form of I
(D)
± (|Σ|) depends on the sign (±) of

t, but not on the sign of the bulk scaling variable Σ. It is

2
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Critical Casimir interactions around the consolute point of a binary solvent

suitable to define the latter as sgn (Σ) = sgn (thb). The
bulk correlation length for hb = 0 is

ξt = ξ
(0)
± |t|−ν

(2a)

and

ξh = ξ
(0)
h |hb|−ν/(βδ)

(2b)

is the bulk correlation length along the critical isotherm.
Here ν, β, and δ = (Dν/β)− 1 are standard bulk critical
exponents. For the Ising bulk universality class consid-
ered here, ν = 0.63 and β = 0.33 in spatial dimension
D = 3 and ν = β = 1/2 in D ≥ 4 [22, 23]. There

are three non-universal amplitudes, ξ
(0)
± and ξ

(0)
h , but the

ratio Uξ = ξ
(0)
+ /ξ

(0)
− forms a universal number [23, 24],

Uξ (D = 3) ≃ 1.9 and Uξ (D = 4) =
√

2. The values of

ξ
(0)
± and ξ

(0)
h depend on the definition of ξ which we take

to be the true bulk correlation length governing the ex-
ponential decay of the two-point correlation function of
the bulk order parameter.

A. Film geometry

A generalized, solvent mediated force f (‖) between two
parallel planar walls a distance L apart is given by [1]

f (‖) = −∂F (ex)

∂L
= −∂ (F − V fb)

∂L
, (3)

where fb is the bulk free energy density, F is the free en-
ergy of the film, and V = AL where A is the macroscop-
ically large surface area of one wall. f (‖)/A is the excess
pressure over the bulk value of the solvent. Upon ap-
proaching the bulk critical point of the confined medium

f (‖) acquires the universal long-ranged contribution f
(‖)
C ,

known as the critical Casimir force [25–27]. Due to its
particular spatial variation and dependence on temper-

ature, f
(‖)
C is a well defined and distinct contribution to

f (‖) [28].
Finite-size scaling [29] predicts that [2]

f
(‖)
C

A =
kBT

LD
ϑ̃
(D)
‖ (Y = sgn (t)L/ξt,Λ = sgn (hb)L/ξh),

(4)

where kB is the Boltzmann constant and ϑ̃
(D)
|| (Y,Λ) is an

universal scaling function. Its functional form depends
on the bulk universality class and on the surface univer-
sality classes of the confining walls. Here we focus on
walls with the same adsorption preferences (expressed in
terms of surface fields conjugate to the order parameter
at the surfaces) in the so-called strong adsorption limit in
which φ (r) → ∞ for the spatial coordinate r approach-

ing the walls. Note that ϑ̃(D) depends on the sign of hb

because the surface fields at the confining walls break the

bulk symmetry hb → −hb. Depending on the particular
thermodynamic path under consideration, other repre-
sentations of the scaling function of the critical Casimir
force might be more convenient. For example, the scaling

function ϑ̂
(D)
|| (Y = sgn (t)L/ξt,Σ = sgn(thb)ξt/ξh) lends

itself to describe the dependence of the CCFs on hb at
fixed temperature. We will discuss the following repre-
sentations

ϑ̃
(D)
‖ (Y,Λ) = ϑ̂

(D)
‖ (Y,Σ =

Λ

Y = sgn(thb)
ξt
ξh

) =

ϑ̄
(D)
‖ (Λ,Σ) = ϑ

(D)
‖ (Y =

Y
I
(D)
± (|Σ|)

= sgn(t)
L

ξ
,Σ).

(5)

B. Colloidal particles

We consider two spherical colloids, or more generally
two hypercylinders, in spatial dimension D. A hyper-
cylinder HD,d =

{
r =

(
r⊥, r‖

)
∈ R

d × R
D−d | |r⊥| ≤ R

}

has a finite extension R in d dimensions and is infinitely
elongated in the remaining (D − d) dimensions. In par-
ticular, spherical colloids in D = 3 are H3,3-particles; our
numerical results are approximate for H3,3, but exact in
D = 4, i.e. for H4,3. Here, the two hypercylinders are
assumed to be geometrically identical and aligned paral-
lel to each other. We denote this geometry by ◦◦. The
solvent-mediated force f (◦◦) between two hypercylinders
a closest surface-to-surface distance L apart is defined by
the right hand side of Eq. (3) with F as the free energy
of the binary solvent in the macroscopically large volume
V with two suspended colloids.

In analogy to the film geometry, f (◦◦) acquires the scal-

ing contribution f
(◦◦)
C , which is given by

f
(◦◦)
C

l
=

kBT

LLD−d

1

∆(d−1)/2

× ϑ
(D,d)
◦◦

(
Y = sgn (t)

L

ξt
,∆ =

L

R
,Λ = sgn (hb)

L

ξh

)
,

(6)

where l is the “length” of the (D − d)-dimensional hy-

peraxis and ϑ
(D,d)
◦◦ is an universal scaling function. (Note

that in Refs. [20, 30] this scaling function has been de-
fined slightly differently.)

Within the Derjaguin approximation [15] the total
force between two spherical objects, H3,3 or H4,3, is

taken to be f
(◦◦)
C /l ≃

∫
dS f̃

(‖)
C = 2π

∫ R

0
dρ ρf̃

(‖)
C (L (ρ)),

where f̃
(‖)
C is the force per area and L (ρ) = L +

2R

(
1 −

√
1 − (ρ/R)

2

)
, leading to the scaling function

3
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Critical Casimir interactions around the consolute point of a binary solvent

[compare with Eqs. (4) and (6)] for d = 3 and D ∈ {3, 4}

ϑ
(D,d=3)
◦◦,Derj (Y,∆,Λ) =

π

1+2∆−1∫

1

dx x−D

[
1 − ∆

2
(x− 1)

]
ϑ̃
(D)
‖ (xY, xΛ) . (7)

Note, that for (D, d) = (4, 4) in the expres-

sion for ϑ
(4,4)
◦◦,Derj there is an additional factor of

2
√

(x− 1)(1 + ∆(x− 1)/4) multiplying the integrand in
Eq. (7). Commonly [20, 30–33], in this context [i.e.,
Eq. (7)] ∆ is set to zero. Thus, within the Derjaguin

approximation, f
(◦◦)
C ∼ ∆−(d−1)/2 [Eq. (6)]. We adopt

this approximation except of, c.f., Fig. 3(b), where we
shall discuss the full dependence on ∆ given by Eq. (7).

C. Landau theory

In the spirit of an expansion in terms of ǫ = 4 − D,
for the lowest order contribution we use the mean-field
Landau-Ginzburg-Wilson theory (hereafter called ‘Lan-
dau theory’ for brevity) in order to study the universal
CCF in the film geometry (Sec. III A) and between two
colloidal particles (Sec. III B). The Hamiltonian, in units
of kBT , is given by [14, 34, 35]

H [φ (r)] =

∫

V

{
1

2
(∇φ)

2
+

τ

2
φ2 +

u

4!
φ4 − hbφ

}
dDr,

(8)
where V is the volume of the confined critical medium,
τ ∝ t changes sign at the (mean-field) critical tempera-
ture Tc, and the quartic term with the coupling constant
u > 0 stabilizes the Hamiltonian in the ordered phase,
i.e., for τ < 0. Equation (8) must be supplemented by
appropriate boundary conditions, which for the critical
adsorption fixed point correspond to φ → ±∞.

Within Landau theory, the bulk correlation lengths
[Eq. (2)] are [20]

ξt (t > 0) = τ−1/2, ξt (t < 0) = |2τ |−1/2
, (9a)

ξh (hb ≷ 0) =
∣∣∣
√

9u/2hb

∣∣∣
−1/3

, (9b)

and

ξ(t, hb) =
{

[ξt (|t|)]−2
sgn (t) + (u/2)φ2

b (t, hb)
}−1/2

,

(10)
where the bulk order parameter φb (t, hb) satisfies{

3 [ξt (|t|)]−2
sgn (t) + u

2φ
2
b

}√
u
2φb = (ξh)

−3
sgn (hb) so

that u
2φ

2
b can be expressed in terms of ξt and ξh and

inserted into Eq. (10). Within Landau theory τ =[
ξ
(0)
+

]−2

t.

The minimum of Eq. (8) gives the mean-field profile
φmf (r; t, hb). With this the critical Casimir force is

fC = kBT

∫

A

T (φ) · n dD−1r = lkBT

∫

A′

T (φ) · n dd−1r

(11)

where A is an arbitrary (D − 1)-dimensional surface en-
closing a colloid or separating two planes, A′ is its
(d− 1)-dimensional subset in the subspace in which the
colloids have a finite extent, n is its unit outward normal,
and

Tjk (φ) =
δh

δ (∂kφ)
(∂jφ) − δjkh (12)

is the stress tensor [30]; here h (φ) is the integrand in
Eq. (8), and ∂kφ = ∂φ/∂xk. For the film geometry with
chemically and geometrically uniform surfaces, the inte-
gration in Eq. (11) amounts to the evaluation of T at an
arbitrary point between the two surfaces. The force be-
tween two colloids is fC = fCe, where e is a unit vector
along the line connecting their centers. We have min-
imized the Hamiltonian H numerically using the finite
element method [36].

Within Landau theory, the scaling functions of the
critical Casimir force carry the undetermined prefac-
tor 1/u, which is dimensionless in D = 4. In order
to circumvent this uncertainty and to facilitate the
comparison with experimental or other theoretical
results, we shall normalize our mean-field results by
the critical Casimir amplitude for the film geome-

try [see Eq. (4)] ∆
(4)
‖ = ϑ̃

(D=4)
|| (Y = 0,Λ = 0) =

− (6/u) 4 [K (1/2)]
4
< 0 [25], where K is the complete

elliptic integral of the first kind. This normalization elim-
inates the prefactor 1

u . For the sphere-sphere geometry,

one has [20, 30] ϑ
(D=4,d=3)
◦◦ (Y = 0,∆ = 0,Λ = 0) =

ϑ
(D=4,d=3)
◦◦,Derj (Y = 0,∆ = 0,Λ = 0) =

π
3 ϑ̃

(D=4)
‖ (Y = 0,Λ = 0) = π

3ϑ
(D=4)
‖ (Y = 0,Σ); note

that Σ = sgn(thb)ξt/ξh = const defines implicitly
various thermodynamic paths hb(t) which, however, all
pass through the critical point (t = 0, hb = 0), i.e.,
Y = 0 [see Fig. 1]. Accordingly, ϑ(D)(Y = 0,Σ) does not
depend on Σ. This normalization scheme holds also for
nonzero values of Y, ∆, and Λ as well as beyond the
Derjaguin approximation.

D. Extended de Gennes-Fisher functional

For the film geometry, we consider the ansatz for the
free energy functional proposed by Fisher and Upton [16]

F [Φ (z)] =

A
∫ L/2

−L/2

[
ξ2(Φ, t)

2χ(Φ, t)
(∂Φ)2 + W (Φ, t, hb)

]
dz + Fs, (13)

4
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Critical Casimir interactions around the consolute point of a binary solvent

where ∂Φ = ∂Φ/∂z. The equilibrium profile Φeq min-
imizes F, and F [Φeq] is the singular part of the free
energy of the near-critical medium confined in the film.
Note that the order parameter Φ in Eq. (13) is dimen-
sionless, unlike φ in the Landau model, in which it has

the dimension (length)
1−D/2

[see Eq. (8)]. The surface
contribution Fs = −hs,1φ (z = −L/2) − hs,2φ (z = L/2)
implements the boundary conditions. We consider walls
adsorbing the same species corresponding to surface fields
hs,1 = hs,2 > 0. W (Φ; t, hb) is the excess (over the bulk)
free energy density (in units of kBT ), ξ (Φ; t) and χ (Φ; t)
are the bulk correlation length and the susceptibility of
a homogeneous bulk system at (Φ, t), respectively [16].

Minimizing the functional given by Eq. (13) leads to
an Euler-Lagrange equation, which can be formally inte-
grated. One then proceeds by taking the scaling limit of
this latter first integral and by using the scaling forms of
the following bulk quantities:

W (Φ; t, hb) = |Φ|δ+1
Y± (Ψ,Σ) (14a)

and

ξ2/ (2χ) = |Φ|ην/β Z± (Ψ) , (14b)

where Ψ = Φ/Φb (− |t| , hb = 0) = |t|−β
Φ/Bt. The (di-

mensionless) non-universal amplitude Bt of the bulk or-
der parameter Φb can be expressed via universal ampli-

tude ratios in terms of the non-universal amplitudes ξ
(0)
+

and ξ
(0)
h of the bulk correlation length [23]; the func-

tions Ỹ± (Ψ,Σ) = Y± (Ψ,Σ) /Y+ (∞, 0) and Z̃± (Ψ) =
Z± (Ψ) /Z+ (∞) are universal. This procedure deter-
mines (even without knowing the explicit functional

forms of Ỹ± and Z̃±) a formal expression for the scal-

ing function ϑ̂
(D)
|| of the CCF [17, 37]. Here we take into

account the additional dependence on the scaling variable
Σ 6= 0 and obtain for Y > 0 [38]

ϑ̂
(D)
|| (Y > 0,Σ) = −A1 |Y|2−α

Ψm
(1+δ)Ỹ+ (Ψm,Σ) ,

(15)
where A1 = RχQc/ (δ + 1) is an universal number which
is expressed in terms of the universal amplitude ra-
tios [23, 24] Rχ, Q2, and Qc. Ψm is defined through
Φm = Φ(z = zm) = ΨmΦb(− |t| , hb = 0), which for the
present case hs,1, hs,2 > 0 is the minimal value of the
order parameter profile across the film.

In order to calculate the critical Casimir force from
Eq. (15) one has to evaluate the functions Y± and Z± in
Eq. (14). The analytical expressions of these functions
can be obtained by using the so-called linear parametric
model [17, 23, 39]. For given Y and Σ the scaling function
of the critical Casimir force is then computed numerically
(for details see Ref. [38]).

ϑ
(D=4)
‖

/
∆

(D=4)
‖

t̂
90

ĥb
1100

4 5
6

7
8

9

10=|Y|1=Σ

Σ=3
φ̂=−5

1

5

10

15

20

FIG. 1. Behavior of the normalized scaling func-

tion ϑ
(D=4)

‖ (Y = sgn (t)L/ξ (t, hb) ,Σ = sgn (thb) ξt/ξh) of

the CCF from Landau theory along lines of constant scaling
variable |Y| = 4, 5, . . . , 10 (from the inner to the outermost
ring) in the thermodynamic state space of the solvent spanned

by t̂ =
(
L/ξ

(0)
+

)1/ν

t and ĥb =
(
L/ξ

(0)
h

)βδ/ν

hb. The color

along the lines of constant |Y| indicates the absolute value

|ϑ
(D=4)

‖ |. The bulk critical point of the solvent (t̂, ĥb) = (0, 0)

is indicated by •. The region shown here lies above the cap-
illary transition critical point

(
Y‖,c = −11,Σ‖,c = 1.3

)
[20],

where the film coexistence line ends. For (+,+) bound-
ary conditions, the capillary condensation transition occurs
for t̂ < 0 and ĥb < 0. The dash-dotted lines indicate the
thermodynamic paths Σ = 1 and = 3 and the dashed line
the path of constant order parameter φ̂ = L

ξ
(0)
+

φ/Bt = −5.

Within Landau theory ν = 1/2 and ν/ (βδ) = 1/3. ∆
(D=4)

‖ =

|ϑ
(D=4)

‖ (Y = 0,Σ) |, which is independent of Σ.

III. NUMERICAL RESULTS

A. Critical Casimir forces in films

1. Landau theory

Our results from Landau theory for
the behavior of the scaling function

ϑ
(D=4)
‖ (Y = sgn (t)L/ξ (t, hb) ,Σ = sgn (thb) ξt/ξh)

of the CCF around the consolute point of the binary
solvent are summarized in Fig. 1. This particular scaling
form turns out to be particularly suitable in view of
the Derjaguin approximation used below for the sphere-
sphere geometry because the dependence of the CCF on
L, measured in units of the true bulk correlation length

ξ (t, hb), enters ϑ
(D=4)
‖ only via Y. The second scaling

variable Σ, which depends on the thermodynamic state
of the solvent, varies smoothly from Σ = 0 at the bulk
coexistence curve to Σ = ±∞ at the critical isotherm.

In Fig. 1, we have plotted several lines of constant
scaling variable |Y| = L/ξ (t, hb) = 4, 5, . . . , 10 in the
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Critical Casimir interactions around the consolute point of a binary solvent

thermodynamic space of the solvent spanned by t̂ =(
L/ξ

(0)
+

)1/ν

t and ĥb =
(
L/ξ

(0)
h

)βδ/ν

hb. The shape of

the lines |Y| = const is determined by the bulk corre-
lation length ξ(t, hb). Therefore it is symmetric about
the t̂-axis. A break of slope occurs at the bulk coexis-

tence line
(
t̂ < 0, ĥb = 0

)
because ξ (t, hb) depends on the

bulk order parameter φb [see Eq. (10)] which varies there
discontinously. We use the color code to indicate the

strength |ϑ(D=4)
‖ | of the Casimir scaling function along

these lines. For (+,+) boundary conditions the criti-
cal Casimir force in a slab is attractive and accordingly

ϑ
(D=4)
‖ < 0 for all values of t and hb.

The main message conveyed by Fig. 1 is the asymme-
try of the critical Casimir force around the critical point
of the solvent with the maximum strength occurring at
hb < 0. This asymmetry is due to the presence of surface
fields which break the bulk symmetry hb → −hb of the
system and shift the phase coexistence line away from the
bulk location hb = 0. In the film with (+,+) boundary
conditions the shifted, so-called capillary condensation
transition, occurs for negative values of hb [1, 40]. At
capillary condensation, the solvation force (which within
this context is a more appropriate notion than the notion
of the critical Casimir force) exhibits a jump from a large
value for thermodynamic states corresponding to the (+)
phase to a vanishingly small value for those correspond-
ing to the (−) phase. Above the two-dimensional plane

spanned by (t̂, ĥb), the surface ϑ
(D=4)
‖ forms a trough

which is the remnant of these jumps extending to the
thermodynamic region above the capillary condensation
critical point, even to temperatures higher than Tc. This
trough, reflecting the large strengths visible in Fig. 1 for

ĥb < 0, deepens upon approaching the capillary conden-
sation point.

Along the particular thermodynamic path of zero bulk
field (i.e., Σ = 0) the minimum is located above Tc and

has the value ϑ
(4)
‖ (Ymin = 3.8,Σ = 0) = 1.4 × ϑ

(4)
‖ (0, 0).

Along the critical isotherm (i.e., |Σ| = ∞) one has

ϑ
(4)
‖ (Ymin = 8.4,Σ = −∞) = 10 × ϑ

(4)
‖ (0, 0). Interest-

ingly, along all lines |Y| = L/ξ (t, hb) = const the

strength |ϑ(4)
‖ (Y = const,Σ) | takes its minimal value at

the bulk coexistence curve hb = 0+. For |Y| ≷ 6.3

the maximal value of |ϑ(4)
‖ (Y = const,Σ) | is located at

hb < 0 and t ≶ 0.
It is useful to consider the variation of the scaling func-

tion of the CCF along the thermodynamic paths of fixed
Σ. As examples, such paths are shown for Σ = 1 and
Σ = 3 in Fig. 1 by dash-dotted lines. Thermodynamic
paths corresponding to 0 < Σ . 1.3 cross the phase
boundary of coexisting phases in the film at certain val-
ues Ycx (Σ), which lie outside the range of the plot in
Fig. 1. Along the paths corresponding to 0 < Σ . 3,

ϑ
(4)
‖ (Y,Σ = const < 3) as function of Y has two minima.

The local minimum occurs above Tc, whereas the global

one occurs below Tc. For all other fixed values of Σ, the

scaling function ϑ
(4)
‖ , as function of Y, exhibits a sin-

gle minimum; for negative Σ it is located above Tc (i.e.,
Y > 0), whereas for Σ & 3 below Tc (i.e., Y < 0). Results

for ϑ
(D=4)
‖ as function of Y = sgn (t)L/ξ (t, hb) for con-

stant values of Σ = sgn (thb) ξt/ξh are shown in Ref. [38].
Thermodynamic paths of constant order parameter

φ 6= 0 are particularly experimentally relevant, be-
cause they correspond to a fixed off-critical composition
of the solvent. As an example Fig. 1 shows the case

φ̂ = L

ξ
(0)
+

φ/Bt = −5 as indicated by the dashed line.

Within mean-field theory this path varies linearly with t.

2. Approximate results for the spatial dimension D = 3

In Ref. [13], the results of Landau theory (which are
exact for D = 4) described above were used in order to
approximate the dependence of the CCFs on the bulk
ordering field hb in spatial dimension D = 3:

ϑ̂
(D)
‖ (Y,Σ) ≃ ϑ̂

(D)
‖ (Y,Σ = 0)

ϑ̂
(D′=4)
‖ (Y,Σ)

ϑ̂
(D′=4)
‖ (Y,Σ = 0)

, (16)

where ϑ̂
(D=3)
‖ (Y,Σ = 0) is taken from Monte Carlo sim-

ulation data [41]. This “dimensional approximation” is
inspired by the observation that the trends and quali-

tative features of ϑ̂
(D)
‖ are the same for different values

of D [41–43]. The characteristics of this approximation
are as follows: (i) For D → D′ = 4, the right hand
side of Eq. (16) turns into the correct expression for the
full range of all scaling variables. (ii) For hb → 0 (i.e.,
Σ → 0) the right hand side of Eq. (16) reduces exactly to

ϑ̂
(D)
‖ (Y,Σ = 0) for all values D, D′, and Y. In this sense

the approximation is concentrated on the dependence on
hb. (iii) For D′ = 4 the approximation can be understood
as the lowest order contribution in an ǫ = 4 −D expan-

sion of ζ
(D)
ϑ‖

= ϑ̂
(D)
‖ (Y,Σ)/ϑ̂

(D)
‖ (Y,Σ = 0) which carries

the whole dependence of the CCFs on Σ. Since ζ
(D′=4)
ϑ‖

is

a ratio, the prefactor of ϑ̂
(D′=4)
‖ , which cannot be deter-

mined within Landau theory (see Sec. II C), drops out.
In Eq. (16), the scaling variables Y and Σ are taken to
involve the critical bulk exponents in spatial dimension
D so that the approximation concerns only the shape of
the scaling function. The use of bulk critical exponents in
spatial dimension D for scaling variables which, however,
are arguments of the scaling function in spatial dimen-
sion D′ 6= D, may lead to a deviation from the proper
asymptotic behavior. However, this potential violation
of the proper asymptotic behavior of the scaling function
of the CCFs is expected to occur for large values of the
arguments of the scaling function for which its value is
exponentially small. Thus, the potential violation should
not matter quantitatively in the range of the values of Y
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Critical Casimir interactions around the consolute point of a binary solvent
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-2
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= Σ
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−5

0

−15 −10 −5 0

ϑ̄
(D

=
3
)

‖

Λ = sgn (hb)L/ξh

(b)

-2
-4

-8

−∞

Σ =

FIG. 2. Two representations of the scaling function of
the critical Casimir force for the film geometry with (+,+)

boundary conditions [Eq. (5)]: (a) ϑ̂
(D=3)

‖ (Y,Σ) plotted ver-

sus Y = sgn (t)L/ξt and (b) ϑ̄
(D=3)

‖ (Λ,Σ) plotted versus

Λ = sgn (hb)L/ξh for several values of the scaling variable
Σ = sgn (thb) ξt/ξh. The full lines are the results obtained
from the local functional approach together with the linear
parametric model [Eq. (15)], and the dashed lines correspond
to the dimensional approximation [Eq. (16)]. In (b) the sym-
bols are Monte Carlo data from Ref. [41] for Σ = −∞. We
note that thermodynamic states corresponding to Σ = −∞
and Σ = ∞ are the same; they form the critical isotherm.

and Σ for which the scaling function ϑ̂
(D)
‖ attains notice-

able values. Here we compare this approximation with
the results obtained from the extended de Gennes-Fisher
functional using the linear parametric model.

In Fig. 2(a) we plot ϑ̂
(D=3)
|| (Y,Σ) as a function of Y > 0

for several values of Σ. For large values of |Σ| the rel-
evant part of the corresponding thermodynamic path is
close to the critical isotherm and accordingly the scaling
variable Λ = ΣY = sgn (hb)L/ξh is more appropriate
than the scaling variable Y. Therefore, in Fig. 2(b) we

show ϑ̄
(D=3)
|| (Λ,Σ) = ϑ̂

(D=3)
|| (Λ/Σ,Σ) as a function of Λ

for several fixed values of Σ ≤ −2.
As can be inferred from Fig. 2 the dimensional approx-

imation in Eq. (16) works well for weak bulk fields (such
that |Σ| < 3). Although the minima of the scaling func-
tions are slightly shifted relative to each other, the depths
of these minima compare well with the results of the local
functional approach. For all |Σ| < ∞, the value Y = 0
corresponds to the bulk critical point and thus at Y = 0

the curves ϑ̂
(D)
‖ attain the same value [see Fig. 2(a)].

For strong bulk fields, i.e., Σ < −4 the dimensional
approximation [Eq. (16)] fails [see Fig. 2(b)]. For exam-

ple, |ϑ̄(D=3)
‖ | of the approximative curve becomes smaller

for more negative values of Σ, which is in contrast to
the results of Landau theory and of the local functional
approach. This wrong trend of the results of the dimen-
sional approximation is explained in detail in Ref. [38].

We note that the scaling functions ϑ
(D=3)
‖ of the crit-

ical Casimir force as obtained from the local functional
exhibit the same qualitative features as the ones calcu-
lated within Landau theory. For example, the position
Ymin (Σ) of the minimum as obtained from the present
local functional theory changes from Ymin (Σ = 0) =
Ymin (Σ = 0) = 3.1 at the thermodynamic path hb = 0
towards Ymin (Σ = −∞) = −Λmin (Σ = −∞) = 9.4 at
the critical isotherm. These values are similar to the ones
obtained from Landau theory. The results of the local
functional approach are peculiar with respect to the cusp-
like minimum for curves close to the critical isotherm [for
|Σ| = ∞, i.e., t = 0, see Fig. 2(b)]. Such a behavior is
also reported for the similar approach used in Ref. [18].
However, there is no such cusp in the Monte Carlo data
for t = 0, i.e., |Σ| = ∞, [41] [see the symbols in Fig. 2(b)].
As compared with the results of the local functional, the

minimum of ϑ̄
(D=3)
‖ (Λ, |Σ| = ∞) obtained from Monte

Carlo simulations is less deep and is positioned at a more
negative value of Λ. For Λ > 0 [not shown in Fig. 2(b)],

ϑ̄
(D=3)
‖ (Λ, |Σ| = ∞) as obtained from the local functional

is less negative than the corresponding scaling function
obtained from the Monte Carlo simulations.

We observe that upon decreasing the spatial dimension

D the ratio of the strengths
∣∣∣ϑ̂(D)

‖

∣∣∣ at its two extrema, the

one located at the critical isotherm and the other located
at hb = 0, increases, from 7 in D = 4 to 11.5 (local
functional) or 8 (Monte Carlo simulations) in D = 3,
and to 15 in D = 2 [44].

B. Critical Casimir forces between spherical

colloids

The CCF between two spherical colloids takes the form
given by Eq. (6); here we take d = 3 and D = 4. In or-

der to calculate ϑ
(4,3)
◦◦ , we use the stress tensor T (φ) [see

Eqs. (11) and (12)] with the mean-field profile φ(r) which
has been determined by minimizing the Hamiltonian in
Eq. (8) numerically using F3DM [36]. To this end we
have put two spherical particles inside a sufficiently large
rectangular box and divided the physical space into a
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Critical Casimir interactions around the consolute point of a binary solvent

mesh of finite elements using TETGEN [45]. We have
used linear basis functions to approximate φ(r) on the
mesh elements, and transformed the functional [Eq. (8)]
into a function of values of φ on the mesh nodes; this
function has been minimized numerically using GSL [46].
In order to account for the strong adsorption boundary
conditions on the surfaces of the colloids, we have ap-
plied a short-distance expansion and have determined
φ(r) at a certain small distance away from each colloid;
this amounts to applying fixed boundary conditions at
spheres surrounding the colloids. (Note, however, that
this approach is only valid for sufficiently large colloid
separations.) At all sides of the computational box φ(r)
is taken to exhibit a vanishing gradient.

CCFs between spherical colloids in zero bulk field have
been widely studied in the literature [20, 31, 33, 47, 48].
Within Landau theory, so far only the critical Casimir in-
teraction between two HD≥4,3 particles in the presence of
a wall has been reported; the dependence of the CCFs on
the bulk field hb has been considered only for HD=4,d=4

particles. Here we focus on three-dimensional spherical
particles, i.e., on hypercylinders H3,3 or HD≥4,3. We re-
call that we consider (+,+) boundary conditions only.

The scaling function ϑ
(4,3)
◦◦ (Y,∆ = const,Λ = 0), as a

function of Y, has a shape which is typical for like bound-
ary conditions [see Fig. 3(a)]. Interestingly, the magni-

tude of ϑ
(4,3)
◦◦ depends non-monotonically on ∆. This is

shown explicitly in Fig. 3(b), where the scaling function is
plotted versus ∆ for three values of Y = sgn(t)L/ξt > 0.

In Fig. 3(b), ϑ
(4,3)
◦◦ approaches the scaling function of the

Derjaguin approximation from above when ∆ → 0, but
decreases upon increasing ∆ > ∆m, where ∆m ≈ 1/2
seems to be almost independent of Y (in the range of Y
shown). This non-monotonic behavior is unlike the case
of H4,4 hypercylinders, for which the scaling function ap-
proaches its value at ∆ = 0 from below and exhibits no
maxima (grey dash-dotted line in Fig. 3(b) reproduced
from Ref. [20]). For the wall-sphere geometry, such a non-
monotonic behavior of the scaling function of the CCF
for ∆ → 0 has been found for a sphere H3,3 using Monte
Carlo simulations [33], but not for (hyper)cylinders H4,d,
d ∈ {2, 3}, treated within Landau theory [32].

The behavior of ϑ
(4,3)
◦◦ for large ∆ ≫ 1 is not quite clear

due to technical difficulties associated with large mesh
sizes and the increasing numerical inaccuracy; moreover,
in this limit, the force attains very small values.

Results for nonzero bulk fields hb are shown in Fig. 4.
For fixed sphere radii R and fixed surface-to-surface
distance L, the curves in Fig. 4(a) for fixed Λ corre-
spond to varying the temperature along the thermody-
namic paths of iso-fields hb = const. For fixed L, the
curves in Fig. 4(b) compare the scaling function of the
CCF as function of hb along the supercritical isotherm
Tc < T = const for various sphere sizes.

For hb > 0 the variation of ϑ
(4,3)
◦◦ with Y resembles

the features observed for vanishing hb in the case of the

sphere-sphere or film geometry, i.e., ϑ
(4,3)
◦◦ exhibits a min-

−1

0

−10 −5 0 5 10

ϑ
(4
,3

)
◦◦

(Y
,∆

,Λ
)
/|
∆

(4
)

‖
|

Y = sgn (t)L/ξt

(a)

|Λ|=L/ξh= 0

∆= L
R= 0.0

0.20.5
1.0
2.0

−1.5

−1.0

0 1 2 3

ϑ
(4
,3

)
◦◦

(Y
,∆

,Λ
)
/|
∆

(4
)

‖
|

∆ = L/R

(b)

0.1

1.0

2.0

Y =sgn(t)L/ξt =

|Λ|=L/ξh=0

H4,3
H4,4

FIG. 3. The critical Casimir force between two like col-
loids in zero bulk field (Λ = 0) as obtained from Landau

theory. (a) The normalized scaling function ϑ
(D=4,d=3)
◦◦ ver-

sus Y = sgn (t)L/ξt for five values of ∆ = L/R, where L
is the surface-to-surface distance between two H4,3-particles
of radius R. The curve ∆ = 0 corresponds to the Derjaguin

approximation. (b) The normalized scaling function ϑ
(4,3)
◦◦

versus ∆ for three values of Y > 0. The results of the Der-
jaguin approximation as given by Eq. (7) are shown by dashed
lines (∆ → 0, next to leading order) and by crosses (∆ = 0).

We recall the relation ϑ
(D=4,d=3)
◦◦ (Y = 0,∆ = 0,Λ = 0) =

π
3
ϑ̃
(D=4)

‖ (0, 0) = π
3

∆
(4)

‖ . For comparison, the scaling func-

tion ϑ
(D=4,d=4)
◦◦ at the critical point (Y = Λ = 0) for H4,4-

particles [20] is shown by the grey dash-dotted line. Interest-
ingly, the full dependence on ∆ of the Derjaguin approxima-
tion for H4,4 (grey dotted line emerging from the grey cross)

displays a trend opposite to the result ϑ
(D=4,d=4)
◦◦ of Ref. [20],

obtained from the full calculation.

imum located above Tc (Y > 0) [compare Fig. 4(a) with
Figs. 3(a) and 2]. Upon increasing the bulk field, the
magnitude of the scaling function decreases and the po-
sition of the minimum shifts towards larger Y. This is in
line with the behavior for the film geometry (Fig. 1).

The behavior of the scaling function for negative bulk
fields is different. For positive Y, there is still a resid-
ual minimum of the scaling function located very close
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Critical Casimir interactions around the consolute point of a binary solvent
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=
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0
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FIG. 4. Effect of the bulk field (Λ 6= 0) on the scaling func-

tion ϑ
(D=4,d=3)
◦◦ of the critical Casimir force [Eq. (6)] as ob-

tained from Landau theory. (a) Normalized ϑ
(4,3)
◦◦ shown as a

function of Y = sgn (t)L/ξt for ∆ = L/R = 1 (full lines) and
within the Derjaguin approximation (∆ = 0, dashed lines)

for four values of Λ = sgn (hb)L/ξh. (b) Normalized ϑ
(4,3)
◦◦

shown as a function of Λ for Y = 1 and for four values of ∆.
The curves are normalized with the critical Casimir amplitude

∆
(4)

‖ for the film.

to Y = 0, which disappears upon decreasing hb. This is
already the case for Λ = −2 in Fig. 4(a). This disap-
pearance is in line with the results for film geometry. For
negative Y, at a certain value Λ < 0, in films capillary
condensation occurs whereas between spherical colloids
a bridging transition takes place [12, 19, 49]. Near these
phase transitions, the effective force acting between the
confining surfaces is attractive and becomes extremely
strong; the depth of the corresponding effective interac-
tion potentials can reach a few hundred kBT . This con-
comitant enormous increase of the strength of the force
is also reflected in the universal scaling function [see the
green line Λ = −2 in Fig. 4(a) for Y < 0]. (For the
film geometry this issue has been discussed in detail in
Ref. [20]; in particular, Fig. 11 in Ref. [20] exhibits a
cusp in the scaling function in the vicinity of the cap-

illary condensation; similarly, upon decreasing Y, called
Θ− in Ref. [20], to negative values the magnitude of the
scaling function increases strongly.)

It is also interesting to note a non-monotonic de-

pendence of the scaling function ϑ
(4,3)
◦◦ on ∆ = L/R

[Fig. 4(b)]. For positive bulk fields,
∣∣∣ϑ(4,3)

◦◦

∣∣∣ is stronger

for larger ∆. This is different, however, for negative bulk

fields, for which
∣∣∣ϑ(4,3)

◦◦

∣∣∣ is stronger for smaller ∆. Such

an increase of
∣∣∣ϑ(4,3)

◦◦

∣∣∣ upon decreasing ∆ holds also for

zero bulk field [see Fig. 3(b) for ∆ & 1/2].
Finally, for larger values of ∆ = L/R the deficiencies of

the Derjaguin approximation are clearly visible in Figs. 3
and 4.

IV. COMPARISON WITH EXPERIMENTAL

DATA

A. Effective interaction potentials

In Ref. [10], the pair distribution function g (r)
of poly-n-isopropyl-acrylamide microgel (PNIPAM) col-
loidal particles immersed in a near-critical 3-methyl-
pyridine (3MP)/heavy water mixture has been deter-
mined experimentally for various deviations ∆T = Tc−T
from the lower critical temperature Tc ≈ 39◦C (of the
miscibility gap of the bulk 3MP/heavy water mixture
without colloidal particles). Here we analyze the exper-
imental data for the 3MP mass fraction ω = 0.28 which
is close to the critical value (see below).

We assume that the solvent-mediated interaction be-
tween the PNIPAM colloids for center-to-center distances
r is the sum of a background contribution Ubck and the
critical Casimir potential Uc. This assumption is valid
for small salt concentrations [50] which is the case for
the samples studied in Ref. [10]. Accordingly, one has

Ubck (r) = Uexp (r; ∆T ) − Uc (r; ∆T ) . (17)

Within the studied temperature range ∆T < 1K this
‘background’ contribution is expected to depend only
weakly on temperature and hence we consider it to be
temperature independent. We use the potential of mean-
force in order to extract the experimentally determined
interaction potential Uexp (r) = −kBT ln [g (r)]. This re-
lation is reliable for small solute densities, as they have
been used in the experiments. Therefore only small de-
viations are expected to occur by using more accurate
expressions for the potential, such as the hypernetted
chain or the Percus-Yevick closures.

Since the numerical calculation of the critical Casimir
potential in the bona fide sphere-sphere geometry for all
parameters which are needed for comparison with exper-
iment is too demanding, here we resort to the Derjaguin
approximation. Within this approximation the critical
Casimir potential Uc between two colloids of radius R
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Critical Casimir interactions around the consolute point of a binary solvent
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FIG. 5. Effective interaction potential Uexp as determined
experimentally in Ref. [10] (symbols, dashed lines as a guide
to the eye) and its background contribution Ubck (full lines).
The experimental system consists of colloidal particles of ra-
dius R ≈ 250 nm immersed in a near critical binary liquid
mixture. The effective potential was determined for vari-
ous deviations ∆T = Tc − T from the lower critical point
Tc, at ∆T/K = 0.6 (×, magenta), 0.5 (�, green), 0.4 (◦,
orange), and 0.3 (△, blue). Upon approaching Tc the mini-
mum of the potential U deepens due to the attractive Casimir
interaction. The ‘background’ part of the potential is ob-
tained by subtracting the critical Casimir potential Uc [see
Eqs. (17)and (18)]. If Ubck was temperature independent
the various full lines would collapse. In (a) the binary liq-
uid mixture used in the experiments (mass fraction ω = 0.28)
is assumed to be at its critical composition ω = ωc = 0.28,
whereas (b) corresponds to a slightly off-critical composition

φ̃ = (ωc − ω) /Bt = −0.088. In (b) one observes a better
collapse of the full lines than in (a). The critical Casimir po-

tential Uc depends on Σ, which is directly related to φ̃ via

the equation of state Σ = E
(
|t|β φ̃

)
(see the main text). The

curves correspond to the value ξ
(0)
+ = 1.5 nm [Eq. (2a)]. The

colloidal particles are soft, so that Uexp (r < 2R) > 0 and very
large but not infinite.

[Eqs. (6) and (7)] is [15, 31, 32]

Uc (r; ∆T, ω) = πkBT
R

r − 2R

×
∫ ∞

1

dx
(
x−2 − x−3

)
ϑ̂
(D=3)
‖ (xY,Σ) , (18)

where Y = sgn (t) (r − 2R) /ξt and Σ = sgn (thb) ξt/ξh.
The dependence of Uc on temperature and on the mass
fraction of the solvent is captured by the bulk correlation
lengths ξt and ξh of the solvent, respectively [Eq. (2)].

In order to calculate the scaling function ϑ̂
(D=3)
‖ of the

critical Casimir force between two planar walls we use
the local functional approach (see Sec. II D).

For the amplitude of the thermal bulk correlation

length we take ξ
(0)
+ = 1.5 nm, which we extracted from

the experimental data presented in Ref. [51]. However,
in the literature there are no well established data for
the critical mass fraction ωc of the 3MP/heavy water bi-
nary liquid mixtures. In Ref. [52], the value ωc = 0.28
is quoted while the scaling analysis of Fig. 1 in Ref. [52]
suggests the value ωc ≈ 0.29. The inaccuracy of the
value for ωc enters into the reduced order parameter

φ̃ = (ωc − ω) /Bt; Bt is the non-universal amplitude
of the bulk coexistence curve ωcx (t = ∆T/Tc < 0) =

ωc ± Bt |t|β . Thus, via the equation of state one obtains

Σ = E
(
|t|β φ̃

)
(see Eq. (A4) in the first part of Ref. [13])

so that the critical Casimir potential Uc [Eq. (18)] de-
pends sensitively on the value of ωc. The function E
is determined by using the equation of state within the
linear parametric model [39]. Note, that as long as we

consider the reduced order parameter φ̃ we do not have

to know the non-universal amplitude Bt (or ξ
(0)
h which is

related to Bt via universal amplitude ratios.)
Figure 5(a) shows the experimentally determined po-

tentials and the extracted background contributions Ubck

for the critical composition being ωc = 0.28 = ω, as
stated in Ref. [10]. In view of the uncertainty in the value

of ωc, we used φ̃ as a variational parameter for achieving
the weakest variation of the ‘background’ potential Ubck

with temperature. For example, for φ̃ = −0.088 the vari-
ation of Ubck as function of T is smaller than 0.5kBT and
thus comparable with the experimentally induced inaccu-
racy [see Fig. 5(b)]. Adopting the value Bt ≃ 0.5 (which
can be inferred from the experimental data of Ref. [52])

φ̃ = (ωc − ω) /Bt = −0.088 corresponds to a critical mass
fraction ωc ≃ 0.236. This value of ωc differs significantly
from the value given in Ref. [10]. We conclude that either
the solvent used in these experiments was indeed at the
critical composition, but Uc does not capture the whole
temperature dependence of Uexp [case (a)]; or that Uc

does capture the whole temperature dependence of Uexp,
but ω = 0.28 is not the critical composition [case (b)].

For all tested values of φ̃, the potential Ubck, which corre-
sponds to ∆T/K = 0.2, deviates the most from the other
three curves. Theses deviations might be attributed to
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Critical Casimir interactions around the consolute point of a binary solvent

the invalidity of the Derjaguin approximation (compare
Sec. III B) or to the overestimation of the CCFs within
the local functional approach (compare Fig. 2). The cal-
culated Uc may suffer from these approximations, and
accordingly the obtained Ubck; this may thus also be the
cause of the attractive part in Ubck. Moreover, also other
physical effects, such as a coupling of the critical fluctua-
tions to electrostatic interactions or the structural prop-
erties of the soft microgel particles, which we have not
included in our analysis [see Eq. (17)] might be of impor-
tance for the considered system.

B. Segregation phase diagram

The experiments of Ref. [10] indicate that, upon ap-
proaching the critical point of the solvent, a colloidal sus-
pension segregates into two phases: poor (I) and rich
(II) in colloids. Reference [10] also provides the exper-

imental data for the colloidal packing fractions (η
(I,II)
cx )

in the coex isting phases I and II. In order to calculate

η
(I,II)
cx , we use the so-called ‘effective approach,’ whithin

which one considers a one-component system of colloidal
particles interacting with each other through an effective,
solvent-mediated pair potential U. Thus this approach
ignores that the solvent itself may ‘participate’ in the
phase separation of the colloidal suspension. This ap-
proximation allows us, however, to make full use of the
known results of standard liquid state theory (for more
details and concerning the limitations of this approach
see Refs. [13, 53]).

Within the random-phase approximation, the free en-
ergy F of the effective one-component system is given by
[13, 54]

πσ3

6V FRPA = kBT fhs +
1

2
ησ

2Ũa,0, (19)

where V is the volume of the system. For the hard-sphere
reference free energy fhs we adopt the Percus-Yevick ex-
pression

fhs/ησ = ln
[π

6
(σ/λ)

3
]

+ ln

[
ησ

1 − ησ

]
− 2 − 10ησ + 5η2σ

2 (1 − ησ)
2 ,

(20)

where ησ =
(

σ
2R

)3
η = π

6σ
3̺ with η being the packing

fraction of the colloids, ̺ their number density, and λ is
the thermal wavelength. We use for the effective hard-
sphere diameter σ =

∫ r0
0

{1 − exp [−U/(kBT )]} dr, with
U (r = r0) = 0. One can adopt also other definitions of
σ (for a discussion see Refs. [55, 56]). Using the present
definition renders a slightly better agreement with the
experimental data than using the one given in Ref. [56].

In Eq. (19), one has Ũa,0 = 6
πσ3 Ûa (q = 0), where

Ûa (q = |q|) =
∫

exp (−iqr)Ua (r) d3r is the Fourier
transform of the attractive part (Ua) of the interaction

0.4
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FIG. 6. Segregation phase diagram from theory (RPA), ex-
periment, and simulations (MC). (a) The phase diagram ob-
tained within RPA using the four available background poten-
tials Ubck from Fig. 5, and their average. The critical Casimir
potential is calculated within the Derjaguin approximation
using the local functional approach (see Sec. IV A) for a re-

duced solvent order parameter φ̃ = −0.088. The background
contributions Ubck have been extracted from the experimen-
tally determined effective potentials [compare Eq. (17)] at
∆T/K = 0.6 (magenta), 0.5 (green), 0.4 (orange), and 0.3
(blue). The thick dark red curve corresponds to the average
of the four potentials Ubck. The solid lines show the phase
boundaries in terms of the packing fraction η of the colloids,
the dashed lines correspond to the spinodals, and dots rep-
resent critical points. (b) Comparison of the theoretical pre-
dictions for the phase boundaries (based on the average Ubck)
with Monte Carlo simulations (⊡) and experiments (×, with
error bars) of Ref. [10]. On the temperature axis ∆T = Tc−T
increases from top to bottom in order to mimic a lower critical
point Tc (of the solvent) as observed experimentally.

potential,

Ua (r) =

{
U (r = rmin) for 0 ≤ r < rmin

U (r) for r ≥ rmin,
(21)

where U (r) attains its minimum at rmin.
In order to calculate the phase diagram of the effective
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Critical Casimir interactions around the consolute point of a binary solvent

one-component system within the RPA approximation,
we use the pair potential U (r) = Ubck (r) +Uc (r), where
Uc is given by Eq. (18), and where the background con-
tribution Ubck is extracted from the experimental data of
Ref. [10]. As discussed in Sec. IV A, there is some inaccu-
racy in determining the background potential Ubck. Fol-

lowing Ref. [10] and assuming φ̃ = 0, we have to consider
four different Ubck. The resulting corresponding segrega-
tion phase diagrams differ from each other qualitatively.
Interestingly, the attractive part of the background po-

tentials Ubck

(
r; ∆T, φ̃

)
corresponding to ∆T/K = 0.4

and 0.2 [see Fig. 5(a)] is so strong, that for these po-
tentials alone (i.e., for U = Ubck without Uc) the RPA
free energy predicts already a phase segregation. For

the background potential Ubck

(
r; ∆T, φ̃

)
corresponding

to ∆T = 0.6K and φ̃ = 0, the presence of Uc is neces-
sary for the occurrence of phase segregation within RPA.
However, the resulting relative value of the critical tem-
perature (∆T )c,eff ≃ 0.39K is much smaller than the
experimentally observed one. On the other hand, for

φ̃ = −0.088, which renders the best expression for Ubck

out of the experimental data of Ref. [10] (see Fig. 5),
the resulting RPA phase segregation diagrams are con-
sistent with each other. This is visible in Fig. 6(a), where
we compare the coexistence curves ηcx (T ) resulting from
the four potentials Ubck of Fig. 5(b), as well as from Ubck

obtained by averaging these four potentials Ubck. Al-
though these five background potentials look very simi-
lar, they nonetheless lead to coexistence curves the criti-
cal temperatures of which differ noticeably [see Fig. 6(a)].
However, away from their critical point, the various co-
existence curves merge; see the region ∆T < 0.4K in
Fig. 6(a). This indicates that for small ∆T the critical
Casimir potential dominates the background potential,
so that the details of the latter (and thus its inaccuracy)
become less important.

Figure 6(b) compares the RPA predictions for the
segregation phase diagram with the experimental data
and with the Monte Carlo simulation data provided by
Ref. [10]. The pair potentials used in these MC simula-
tions are the sum of an attractive and a repulsive expo-
nential function and thus they differ from the ones used
here. At high colloidal densities, the RPA is in surpris-
ingly good agreement with the experimental data. On
the other hand, at low densities the RPA agrees well
with the Monte Carlo simulations, but both theoreti-
cal results underestimate the experimental values which,
in turn, agree well with the low-η branch of the RPA-

spinodal (an observation also observed for φ̃ = 0). While
this latter ‘agreement’ might be accidental, it neverthe-
less raises the question whether the experimental system
has actually been fully equilibrated at the time of the
measurements.

V. SUMMARY

Critical Casimir forces act between surfaces confining
a near-critical medium. For instance, colloidal parti-
cles suspended in a binary liquid mixture act as cav-
ities in this solvent. Thus near its critical point of
demixing the suspended colloids interact via an effec-
tive, solvent-mediated force, the so-called critical Casimir
force (CCF). We have analyzed the dependence of the
CCFs on the bulk ordering field (hb) conjugate to the
order parameter of the solvent. For a binary liquid mix-
ture, hb is proportional to the deviation of the differ-
ence of the chemical potentials of the two species from
its critical value. In the presence of hb, we have used
the mean-field approximation for the Landau-Ginsburg-
Wilson theory to calculate the CCFs between parallel
plates and between two spherical colloids, as well as the
local functional approach of Fisher and de Gennes for
parallel plates. We have shown that the CCF is asym-
metric around the consolute point of the solvent, and
that it is stronger for compositions slightly poor in that
species of the mixture which preferentially adsorbs at the
surfaces of the colloids [see Figs. 1, 2(a), 2(b), and 4].

For two three-dimensional spherical particles posing
as hypercylinders (H4,3) in spatial dimension D = 4
we observe a non-monotonic dependence of the scaling
function of the CCF on the scaling variable ∆ = L/R,
where L is the surface-to-surface distance and R is the
radius of monodisperse colloids [see Fig. 3(b) as well as
Fig. 4]. Unlike four-dimensional spherical particles (H4,4)
in D = 4, the scaling functions for H4,3 exhibit a max-
imum at ∆ ≈ 1/2 before decreasing upon increasing ∆
[see Fig. 3(b)]. This different behavior may be attributed
to the extra macroscopic extension of the hypercylinders
H4,3. This raises the question whether H4,3 or H4,4 is the
better mean-field approximation for the physically rele-
vant case of three-dimensional particles H3,3 in D = 3.
Due to this uncertainty, and in view of the limited reli-
ability of the Derjaguin approximation (see Figs. 3 and
4), more accurate theoretical approaches are highly de-
sirable. Because the local functional approach is com-
putational less demanding than Monte Carlo simulations
and it is reliable for hb = 0, it would be very useful to
improve this approach for hb 6= 0 and to generalize it
to more complex geometries, in particular to spherical
objects.

In addition, due to numerical difficulties the behavior
of the scaling function of the CCF for ∆ → ∞ remains as
an open issue. Since one faces similar numerical difficul-
ties for ∆ → 0, we conclude that within Landau theory,
the numerical solution finds its useful place in between
small and large colloid separations. The small separa-
tions are captured well by the Derjaguin approximation.
For HD,d-particles with d > βD/ν, the large separations
can be investigated by the so-called small radius expan-
sion. However, the case H4,3 represents a ‘marginal’ per-
turbation for which the small radius expansion is not
valid [57]. Therefore, it would be interesting to study
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Critical Casimir interactions around the consolute point of a binary solvent

the asymptotic behavior of the scaling function of the
CCF for large colloid separations by other means.

We have compared our theoretical results for the crit-
ical Casimir potential [within the Derjaguin approxima-
tion and the local functional approach, see Eq. (18)] with
experimental data taken from Ref. [10] (see Fig. 5). Con-
cerning the potentials we find a fair agreement, however
their detailed behavior calls for further, more elaborate
experimental and theoretical investigations.

As a consequence of the emergence of CCFs, a col-
loidal suspension thermodynamically close to the critical
point of its solvent undergoes phase separation into a
phase dense in colloids and a phase dilute in colloids.
Using the random phase approximation for an effective
one-component system, we have calculated the phase di-
agram for this segregation in terms of the colloidal pack-
ing fraction and of the deviation of temperature from the

critical temperature of the solvent. Surprisingly, despite
resorting to these approximations, the calculated phase
diagram agrees fairly well with the corresponding exper-
imental and Monte Carlo data (Fig. 6). Both the RPA
calculations and the Monte Carlo simulations are based
on the so-called effective approach and compare similarly
well with the experimental data. However, in order to
achieve an even better agreement with the experimen-
tal data, it is likely that models have to be considered
which take into account the truely ternary character of
the colloidal suspension.
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[44] A. Drzewiński, A. Macio lek, and A. Ciach, Phys. Rev.
E 61, 5009 (2000).

[45] H. Si, http://wias-berlin.de/software/tetgen/.
[46] Gnu Scientific Library, http://www.gnu.org/software/gsl/.
[47] T. W. Burkhardt and E. Eisenriegler, Phys. Rev. Lett.

74, 3189 (1995).
[48] T. G. Mattos, L. Harnau, and S. Dietrich, J. Chem.

Phys. 138, 074704 (2013).
[49] C. Bauer, T. Bieker, and S. Dietrich, Phys. Rev. E 62,

5324 (2000).
[50] F. Pousaneh and A. Ciach, J. Phys.: Cond. Matt.

23, 412101 (2011); M. Bier, A. Gambassi, M. Oettel,
and S. Dietrich, EPL 95, 60001 (2011); F. Pousaneh,
A. Ciach, and A. Maciolek, Soft Matter 8, 3567 (2012).

[51] C. M. Sorensen and G. A. Larsen, J. Chem. Phys. 83,
1835 (1985).

[52] J. D. Cox, J. Chem. Soc. 1952, 4606 (1952).
[53] A. A. Louis, J. Phys.: Condens. Matt. 14, 9187 (2002).
[54] J. P. Hansen and I. R. McDonald, Theory of simple liq-

uids (Academic, London, 1976).
[55] H. C. Andersen, J. D. Weeks, and D. Chandler, Phys.

Rev. A 4, 1597 (1971).
[56] We have also considered the definition σ =∫ rmin

0
{1 − exp [−Ur/(kBT )]} dr, where Ur(r) =

U(r) − U(rmin) with U (r) attaining its minimum at
rmin.

[57] A. Hanke and S. Dietrich, Phys. Rev. E 59, 5081 (1999).

14

Page 14 of 15Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



  

 

 

Critical Casimir forces between colloids depend sensitively on the thermodynamic state of the solvent which 

is reflected in the phase behavior of colloidal suspensions.  
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