Issue 35, 2014

Dynamics of non-Brownian fiber suspensions under periodic shear

Abstract

We report experiments studying the dynamics of dense non-Brownian fiber suspensions subjected to periodic oscillatory shear. We find that periodic shear initially causes fibers to collide and to undergo irreversible diffusion. As time progresses, the fibers tend to orient in the vorticity direction while the number of collisions decreases. Ultimately, the system goes to one of two steady states: an absorbing steady state, where collisions cease and the fibers undergo reversible trajectories; an active state, where fibers continue to collide causing them to diffuse and undergo irreversible trajectories. Collisions between fibers can be characterized by an effective volume fraction Φ with a critical volume fraction Φc that separates absorbing from active (diffusing) steady states. The effective volume fraction Φ depends on the mean fiber orientation and thus decreases in time as fibers progressively orient under periodic shear. In the limit that the temporal evolution of Φ is slow compared to the activity relaxation time τ, all the data for all strain amplitudes and all concentrations can be scaled onto a single master curve with a functional dependence well-described by tβ/νRetR, where tR is the rescaled time. As ΦΦc, τ diverges. Therefore, for experiments in which Φ(t) starts above Φc but goes to a steady state below Φc, departures from scaling are observed for Φ very near Φc. The critical exponents are measured to be β = 0.84 ± 0.04 and ν = 1.1 ± 0.1, which is consistent with the Manna universality class for directed percolation.

Graphical abstract: Dynamics of non-Brownian fiber suspensions under periodic shear

Article information

Article type
Paper
Submitted
13 Mar 2014
Accepted
19 Jun 2014
First published
28 Jul 2014

Soft Matter, 2014,10, 6722-6731

Author version available

Dynamics of non-Brownian fiber suspensions under periodic shear

A. Franceschini, E. Filippidi, E. Guazzelli and D. J. Pine, Soft Matter, 2014, 10, 6722 DOI: 10.1039/C4SM00555D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements