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We report experiments studying the dynamics of dense non-Brownian fiber suspensions subjected to periodic oscillatory shear.
We find that periodic shear initially causes fibers to collide and to undergo irreversible diffusion. As time progresses, the fibers
tend to orient in the vorticity direction while the number of collisions decreases. Ultimately, the system goes to one of two steady
states: an absorbing steady state, where collisions cease and the fibers undergo reversible trajectories; an active state, where fibers
continue to collide causing them to diffuse and undergo irreversible trajectories. Collisions between fibers can be characterized
by an effective volume fraction Φ with a critical volume fraction Φc that separates absorbing from active (diffusing) steady
states. The effective volume fraction Φ depends on the mean fiber orientation and thus decreases in time as fibers progressively
orient under periodic shear. In the limit that the temporal evolution of Φ is slow compared to the activity relaxation time τ , all
the data for all strain amplitudes and all concentrations can be scaled onto a single master curve with a functional dependence
well-described by t−β/νR e−tR , where tR is the rescaled time. As Φ → Φc, τ diverges. Therefore, for experiments in which
Φ(t) starts above Φc but goes to a steady state below Φc, departures from scaling are observed for Φ very near Φc. The critical
exponents are measured to be β = 0.84 ± 0.04 and ν = 1.1 ± 0.1, which is consistent with the Manna universality class for
directed percolation.

1 Introduction

The collective organization of athermal rods suspended in a
liquid is relevant for several fields of engineering and science,
including oil extraction,1 cement reinforcement,2 and blood
flows.3,4 While the rheology of suspensions of athermal rods is
reasonably well studied,5,6 the mechanisms controlling parti-
cle organization remain unclear, especially at high concentra-
tion, where collisions dominate structural reorganization.7–9

In contrast to colloidal suspensions, which are driven by ther-
mal forces towards a free energy minimum, athermal suspen-
sions lack a general theoretical framework to explain their col-
lective organization.10,11 Based on the present study of con-
centrated suspensions of athermal non-colloidal fibers under
periodic shear, we suggest that the dynamics of non-colloidal
fibers in suspension can be understood as a directed percola-
tion process,10 controlled by a slowly relaxing effective vol-
ume fraction that quantifies the probability of shear-induced
collisions.

At low Reynolds numbers, hydrodynamic interactions are
expected to be reversible.12 However, experiments and sim-
ulations on suspensions of spheres13–17 and fibers18–23 show
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that there are circumstances where simple hydrodynamic re-
versibility seems to be violated. Under slow periodic shear,
some particles trace out periodic trajectories, but a fraction
of particles undergo small random displacements,14,16 which
are believed to be induced by non-hydrodynamic interactions
that arise during particle collisions.13,14,16,17,22 Particles that
undergo irreversible displacements are said to be active; their
irreversible motion under periodic shear leads to particle dif-
fusion.13 For randomly prepared systems, this diffusion is ob-
served to slowly diminish with time as particles find positions
that reduce the probability of collision. If the strain amplitude
is sufficiently small, complete reversibility is achieved. Above
a volume-fraction-dependent strain threshold, however, full
reversibility is not achieved and a steady state develops in
which a finite fraction of particles undergo random displace-
ments and diffusion persists.15,22,24

The transition between a quiescent absorbing state with no
active particles and a fluctuating state is a non-equilibrium
critical phase transition called an absorbing phase transition
(APT).10,25,26 It has been observed in other driven systems
with a conserved number of particles, including simulated sys-
tems such as sandpiles25 and experimental systems such as
superconducting vortices.27 It belongs to a broader class of
transitions called conserved directed percolation (CDP, or the
Manna class),10,17 whose basic physics is captured by the ran-
dom organization model.15 In this model, particles are sub-
jected to an oscillatory shear and experience random displace-
ments if they come within a specified distance of each other.17
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At low strain amplitude, the system finds an absorbing state
after a number of oscillations. At a strain amplitude higher
than a volume fraction dependent critical threshold, the effect
of close encounters propagates throughout the system, initiat-
ing persistent diffusion.13,17

In this article, we investigate the absorbing phase transition
observed in fiber suspensions under oscillatory shear. By fo-
cusing on confined suspensions at several volume fractions,
we show that this transition is controlled by a slowly-relaxing
parameter, the effective volume fraction, which quantifies the
frequency of fiber-fiber collisions under shear. This effective
volume fraction is a function of the strain amplitude, the vol-
ume fraction and the slowly-relaxing fiber orientation distribu-
tion.22,23 We measure the experimental values of the critical
exponents associated with this transition and show that they
are consistent with the Manna universality class. This result
confirms that fibers and sphere suspension dynamics have the
same underlying physics once the orientation distribution is
taken into account.

2 Formulation of the Problem

2.1 Description of the experiment

We use the same non-Brownian nylon rods described pre-
viously, with length L = 1.52 ± 0.14 mm and diameter
d = 0.140 ± 0.001 mm.22 They have a length-to-diameter
ratio L/d = 11 and are suspended in a density-matched,
highly viscous Newtonian fluid.15 In this study, the volume
fraction c of rods ranges between 0.05 and 0.20. Thus, all
concentrations are above the semi-dilute overlap concentra-
tion c? = 3

2 (d/L)2 = 0.013 defined by the concentration
where spheres of diameter L fill the sample volume. The con-
centrations straddle the boundary between the semi-dilute and
concentrated regimes c?? = d/L = 0.092, defined by the
concentration where disks of diameter L and thickness d fill
the sample volume. All concentrations are below the Onsager
isotropic-to-nematic concentration cIN = 3.34(d/L) = 0.31.

The suspensions are confined in the thin gap g = 1.5L of
a transparent Couette cell (Fig. 1b). The refractive index of
the fluid and fibers are matched, with a small fraction of the
fibers labeled with rhodamine dye to facilitate viewing when
illuminated by a sheet of laser light, as described in Fig. 1.

To ensure a reproducible initial state, the sample is sheared
at a steady moderate strain rate (Re ≈ 0.1) before the start
of each measurement.28,29 The total strain applied during this
“pre-shear” is on the order of 102. The pre-shear is turned off,
and then after a few minutes rest (this time is not important),
the sample is subjected to periodic strain with a strain by os-
cillating the inner cylinder. In a typical experiment, the sam-
ple is subject to 250 to 1500 shear cycles with a strain ampli-
tude γ and a period of about 30 s, ensuring that the Reynolds

x

Fig. 1 (a) The fibers are 1.5-mm-long cylinders with a aspect ratio
of 11. (b) Couette cell with illuminated with a 532 nm green laser
sheet, oriented either vertically or horizontally for viewing either
from the side or the top, respectively, of the Couette shear cell. The
yellow rectangle shows the observation window when a vertical
laser sheet is used. The bottom of the Couette cell, where the shear
flow is not homogeneous, is filled with a heavy immiscible
fluorinated oil that prevents particles from migrating underneath the
rotating central cylinder. (c) x-y projection of the Couette shear cell
filled with a suspension at c = 0.15. A small fraction (≈ 5%) of the
fibers are dyed with Rhodamine and are tracked. 30 These fibers are
between L and 3L from the liquid-air boundary. (d-e) Images of the
dyed fibers in the x-z plane (d) before and (e) after a run at c = 0.15
with γ = 2.90 showing that the fibers tend to align vertically in the
vorticity plane after periodically sheared for a period of time. The
evolution of the orientation distribution is discussed in the text.

number Re < 5 × 10−3. The samples are typically strained
sinusoidally, although using other waveforms—triangular for
example—have no apparent affect on the results. Similarly,
none of the results depends on the period (or frequency) of os-
cillation in low Reynolds number regime studied here, that is
for Re� 1.

The positions of the fluorescent fibers, illuminated by the
laser sheet, are digitally recorded once each cycle, either from
the top (Fig. 1c) or from the side (Fig. 1d-e) of the Couette
cell. Fibers that undergo perfectly reversible periodic trajecto-
ries appear at the same position and orientation in successive
images. Fibers whose trajectories are not reversible appear
displaced and/or rotated in successive images. In either case,
the center of mass positions and orientations of each fiber are
extracted from the images and tracked using standard meth-
ods.30

In addition to recording the particle coordinates, the com-
plex viscosity is recorded, as the central cylinder in the Cou-
ette cell is part of a commercial rheometer, as described pre-
viously.15,22
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Fig. 2 a: Jeffery orbits with C = 0.5 (—), C = 1 (—), C = 2 (—),
C = 4 (—). The fiber is shown at an orbit extremum, which is the
most probable position. b: Representation of a fiber in spherical
coordinates, with projection onto x-y plane. c: Projection of a fiber
onto the x-z plane.

2.2 Motion of fibers in shear flow

An isolated cylindrical fiber in a steady homogeneous shear
flow undergoes a tumbling motion called a Jeffery orbit.31,32 It
is the composition of a trivial center-of-mass translation with
a periodic rotation of the fiber centered about the vorticity axis
defined by the flow (Fig. 2a). The fibers used here are cylin-
ders with a constant circular cross section, but can be modeled
as ellipsoids with an effective aspect ratio of r = 0.7L/D.9,33

Such a fiber spends a time O(r) aligned with the flow in the
x-z plane (cf. Fig. 2a) and rapidly tumbles, flipping head to
tail, in a time O(1/r). The tilt of the fiber from the z axis is
related to the orbit constant C: C → 0 corresponds to align-
ment along the vorticity axis z, while C →∞ corresponds to
rotation in the x-y plane.

We use spherical coordinates to characterize fiber orienta-
tion, with θ the polar angle and φ the azimuthal angle The
angle α is the angle between the x axis and the projection of
the fiber onto the x-z plane (see Fig. 2), and is the angle that is
directly measured when the laser sheer is oriented vertically.
At a shear rate γ̇, the evolution of φ and θ are given by

tanφ =
1

r tan
(

γ̇t
r+1/r + δ

) (1)

tan θ =
Cr√

cos2 φ+ r2 sin2 φ
, (2)

where δ is the initial phase.31

These equations remain approximately valid for a suspen-
sions at finite concentrations.34 In this case, the orbit constant
C has distributionDt(C), withDt(C)dC being the fraction of
fiber at a time t that describes an orbit with a constant between
C and C + dC. This distribution is evaluated by measuring
the distributions of the projected angles α and φ at each time
t, using a method described in the discussion section.

Fig. 3 Temporal evolution of Sφ at c = 0.15 for selected strain
amplitudes. Inset: Orientational probability distribution function of
φ, according to our measurements (�) at c = 0.15 and Jeffery
equations (—).

2.3 Orientation distribution

We extract the orientational probability distribution function
(PDF) of φ from images like the one shown in Fig. 1c. From
the PDF, we calculate an orientational order parameter Sφ =
1−2〈cos2 φ〉, in which the angled brackets denote the ensem-
ble average over a single image. For c = 0.15, Sφ(t) fluctuates
around an average value Sφ = −0.66±0.15 independently of
the strain amplitude (Fig. 3). This value is higher than the
value of -0.77 expected from the Jeffery equations, signifying
that the distribution of φ is slightly broader than predicted by
Jeffery (see inset Fig. 3). Oscillatory shear does not change
the distribution of φ; to within experimental resolution, it is
the same as for the steady preshear.28,35

We extract the PDF of α from images like the ones shown
in Fig. 1d, e, and again use the PDF to determine an orien-
tational order parameter, in this case Sα(t) = 1 − 2〈cos2 α〉,
which quantifies the orientation in the x-z plane. In contrast to
Sφ(t), Sα(t) generally increases with time, as shown in Fig.
4, signifying that fibers progressively align with the vorticity
direction under periodic shear. This behavior was reported
earlier.22 Numerical simulations by Snook et al.23 attribute
the alignment of fibers to the confining effect of walls and to
collisions between fibers. Figure 4, which shows Sα(t) for
c = 0.10 at selected strain amplitudes, shows that Sα(t) does
not vary at the lower strain amplitudes, but increases in the
first 50 cycles for higher strain amplitudes. Similar behav-
ior is observed at other volume fractions, although the strain
amplitude necessary to cause significant orientation decreases
with increasing the volume fraction.
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Fig. 4 Temporal evolution of Sα at c = 0.10 for selected strain
amplitudes. Inset: Φ/(cγ) is expressed against Sα for samples in
the initial state and in the steady state. The values of Φ are
computed using eqn ( 6). The straight line is given by eqn (7), using
B as a fitting parameter. Volume fractions: � c = 0.20,
N c = 0.15, � c = 0.10,  c = 0.05.

2.4 Relaxation of the activity

Each cycle we record the apparent complex viscosity η∗(t) =
η′(t)+ıη′′(t), which typically evolves with time. As discussed
in §7.4, the imaginary component η′′(t) serves as a quantita-
tive measure of the activity of the suspension, that is, of the
fraction or average degree of displacement of the fibers at time
t.15,22

Figure 5 shows the relaxation of η′′(t) for selected strain
amplitudes at a volume fraction of c = 0.10. The activity
starts at a high level, set by the pre-straining protocol, and
decreases with time, which means that the rods systematically
move to positions that tend to decrease the overall number of
collisions. At low strain amplitudes (γ < 3.5 for c = 0.10),
η′′ vanishes in less than a hundred cycles, which means that an
absorbing state has been reached. At higher strain amplitudes,
η′′ decreases more slowly and eventually fluctuates around a
finite value, which means that a fluctuating steady state has
been reached.

Near the strain amplitude for which the total change ∆Sα ≡
Sα(∞)−Sα(0) is greatest, we observe one or more inflections
in η′′(t). In Fig. 4, for example, we see that for c = 0.10, ∆Sα
is greatest for γ ≈ 4; in Fig. 5, we see inflections in η′′(t)
around the same values. As we shall see, these inflections arise
from emergence of nematic order as the fibers begin to align
in the vorticity direction under the influence of the imposed
periodic strain. The alignment of the fibers, which proceeds
slowly under periodic strain, turns out to have a profound ef-
fect on the absorbing phase transition exhibited by this system.

Fig. 5 Relaxation of the imaginary viscosity η′′(t) at c = 0.10. The
dark straight line is the critical relaxation t−β/ν , as suggested by
theory of APTs 10,36 The straight gray lines also show the critical
relaxation t−β/ν but shifted to later times.

As far as we know, these fiber suspensions constitute the first
experimental system for which an absorbing phase transition
controlled to a slowly-varying parameter such as nematic or-
der.

3 Absorbing phase transition controlled by a
time-dependent parameter

Theories of APTs suggest that the relaxation of the activity is
controlled by a parameter Φ, defined in lattice models as the
fraction of occupied sites.

For the case of non-colloidal suspensions, Φ is an effective
volume fraction, defined by the volume swept out by the tra-
jectories of all the fibers during a single shear cycle. That is,
Φ = Nv/V , where N the number of particles, V is the vol-
ume of the suspension, and v is the average volume swept out
by particles during a period (Fig. 6). The volume swept out
by an individual particle depends on its shape and orientation,
and increases with the strain amplitude γ. Thus, Φ depends
on the shape and orientation of particles, and increases with
γ. In the absence of shear, Φ goes to zero. We define Φ in
this way because we use Φ to characterize the probability that
fibers collide with each other. In the absence of shear (and
Brownian motion), the probability of a collision vanishes.

The definition of Φ used here differs from the effective vol-
ume fraction Φ′(t) = c+ Φ(t) we previously defined.22 Scal-
ing the dynamics of the suspension with Φ′ or Φ is equivalent
when dealing with a single value of concentration. However,
the present study uses four different concentrations and we
find that the suspension behavior is better captured by Φ(t)
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than by Φ′(t).

3.1 Effective volume fraction of a sphere suspension

As an example, we calculate the effective volume fraction of
a suspension of spheres under oscillatory uniform shear flow
with a strain amplitude γ and a frequency ω (eqn (3)), withUx,
Uy , Uz being the velocity component in the flow, gradient, and
vorticity directions, respectively. Quantitatively, the velocity
flow field is given by

Ux = yγ sinωt , Uy = 0 , Uz = 0 . (3)

We define the cross-section σ of a sphere as its geometrical
projection onto the plane perpendicular to the flow (Fig. 6a).
The effective (additional) volume v swept out by a sphere is
the circular cross section σ(y, z) tilted back and forth in the x
direction by the full peak-to-peak strain 2γ|y|. Over one cycle,
this volume is given by

v = 2γ

∫
|y|σ(y, z) dy dz . (4)

This volume v is represented on Fig. 6b for the first half of a
cycle. For a suspension of spheres under periodic flow, per-
forming the integral above leads to an effective volume frac-
tion of

Φ =
Nv

V
=

2

π
γc . (5)

For a suspension of spheres, the effective volume fraction is
proportional to the strain amplitude, the volume fraction, and
a shape factor.

3.2 Effective volume fraction of a fiber suspension

The effective volume fraction Φ of a fiber suspension is the
volume swept out by all the fibers during a cycle divided by
the volume of the suspension. To measure the effective vol-
ume v that each fiber sweeps out during a cycle, we use a
mean-field average that takes the orientations of the fibers into
account: the cross section is averaged (i) over the orientation
the fibers take when they describe an orbit C and (ii) over the
distribution of orbits Dt(C).

The cross section σC of fibers is averaged over their orienta-
tions during an orbit characterized by orbit constantC: it is the
accumulated projections onto the gradient-vorticity plane for a
given orbit (dark shades in Fig. 6c-d). The effective volume v
for the whole suspension is then expressed as an average over
the distribution Dt(C) of Jeffery orbits

v = 2γ

∫
C

[∫
y,z

|y|σC(y, z) dy dz

]
Dt(C) dC (6)

The cross section σC becomes narrower and smaller as C de-
creases, which corresponds to greater orientation of fibers in

Fig. 6 a: Cross-section σ of a sphere. b: x-y view of the effective
volume that will pass through σ during half a cycle. c: Cross-section
σC of a Jeffery orbit with C = 0.2. σC is the accumulated
projection of fibers describing that orbit. The gray scale reflects the
non-homogeneous distribution of φ within a Jeffery orbit. d: x-y
view of the effective volume that will pass through σC during half a
cycle, weighted by the intensity of the cross-section.

the vorticity (z) direction. The effective volume also decreases
as Dt(C) is shifted to the smaller values of C.

The distribution of orbits Dt(C) can be calculated at any
time t, knowing the distribution of the projected angles φ(t)
and α(t) at that time (see section 4.3). By expressing Φ =
Nv/V as a function of Sα, we express the effective volume
fraction Φ as a function of the strain amplitude, the volume
fraction and the average value of the projected angle α

Φ = cγ
(
2/π +B〈cos2 α〉

)
(7)

The coefficient B = 0.6 ± 0.1 is deducted from plotting
Φ/(cγ) as a function of Sα (see inset, Fig. 4). Given this
value, Φ ≈ cγ for a suspension with a uniformly distributed
projected angle α where 〈cos2 α〉 = 1

2 , and Φ = 2
π cγ for a

nematic suspension where 〈cos2 α〉 = 0.
From our measurements of the time-dependent distribution

of α, we determine Φ(t) using eqn (7). In Fig. 7, we show typ-
ical plots of Φ(t) for different strain amplitudes for c = 0.10.
The effective volume fraction can decrease by as much as 10%
from its initial value as the fibers become more oriented. The
evolution of the orientation shown in Fig. 4 has a significant
effect on the probability that fibers collide. This 10% change
in Φ is consistent with the change in collision rate reported by
Singh et al.9 It is small compared to the change induced by
variation in the aspect ratio. As we shall see, however, even
the change in average orientation can have dramatic conse-
quences on the suspension dynamics.
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Fig. 7 Temporal evolution of the effective volume fraction Φ(t) at
c = 0.10. The dotted line represents the critical effective volume
fraction Φc, as discussed in section §4. Similar decay of Φ with time
is observed for all volume fractions.

4 Relaxation of the activity: scaling with Φ

Experimentally, we find that the effective volume fraction Φ
controls the absorbing phase transition in fiber suspensions
under oscillatory shear. A critical threshold Φc separates ab-
sorbing states (Φ < Φc) for which activity vanishes, from fluc-
tuating states (Φ > Φc) for which activity is remains finite and
fluctuates around a steady state value. The critical threshold
Φc is non-universal and must be experimentally determined.

Near the critical threshold where Φ→ Φc, theories of APTs
suggest that the relaxation of the activity η′′(t) should, in anal-
ogy with continuous equilibrium phase transitions10,36, follow
a universal scaling law

η′′(t)

η′′0
=

∣∣∣∣ Φ

Φc
− 1

∣∣∣∣β FΦ

(
t

t0

∣∣∣∣ Φ

Φc
− 1

∣∣∣∣ν) (8)

where β and ν are activity and time scaling exponents, and η′′0
is the initial value of η′′ at t0.

These exponents characterize the singularity observed
around a critical point. As in equilibrium physics, systems
that belong to the same universality class have identical expo-
nents.10,36 APT in systems that have a conserved number of
particles belong to the Manna universality class15,22,24 and the
exponents are expected to be β = 0.84 and ν = 1.081 in three
dimensions.10,36

The scaling function FΦ is different above and below
threshold but follows a power law FΦ ∼ x−β/ν for both cases
in the vicinity of Φc. Below Φc, the activity vanishes at long
times: η′′(t = ∞) ≡ η′′∞ = 0. Above Φc, the steady state

Fig. 8 Steady state activity against Φ∞. Inset: Steady state activity
against |Φ∞/Φc − 1|. Legend: � c = 0.20, N c = 0.15,
� c = 0.10,  c = 0.05, and —— |Φ∞/Φc − 1|β .

activity is predicted to scale as

η′′∞ = η′′0

∣∣∣∣ Φ

Φc
− 1

∣∣∣∣β , (9)

such that activity vanishes continuously as Φ → Φc from
above.

On both sides of the transition, the activity relaxation time
τ , which is the longest correlation time in the system, is pre-
dicted to diverge according to a power law26

τ =
t0∣∣∣ Φ

Φc
− 1
∣∣∣ν . (10)

4.1 Measuring the critical exponents

To our knowledge, the exponent β of APT has been measured
experimentally only in turbulent liquid crystals.37 Here, we
measure β by plotting η′′∞/η

′′
0 against Φ∞, where Φ∞ is the

final steady state value of Φ (see Fig. 7). The data are plotted
in Fig. 8. Below Φc, the steady state activity is zero to within
the noise. Above Φc, the steady state activity is finite and
follows eqn (9) with β = 0.84 ± 0.04. The critical value Φc
exhibits a weak dependence on fiber concentration, which we
discuss in §5, but is in the range of 0.3 to 0.4.

For Φ→ Φc, the relaxation time τ of the transient regime is
expected to diverge according eqn (10). To obtain a correlation
time for Φ < Φc, we model the time dependence of the data
as a power law cut off by an exponential

η′′(t) = η′′0
e(t0−t)/τ

(t/t0)α′ , (11)
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where α′ = β/ν. Equation (11) captures the expected asymp-
totic power-law decay for Φ → Φc. Figure 9(a) shows rep-
resentative fits to eqn (11) at selected strain amplitudes for
c = 0.2. The measured values of τ are plotted vs

∣∣Φ/Φc − 1
∣∣,

where Φ is the average value of Φ during the decay, which
varies by no more than a few percent for these data. We ob-
tain our measurement of the time exponent from the slope in
Figure 9(b), which gives ν = 1.1± 0.1.

Analysis of the data to measure τ for Φ > Φc requires more
care. Therefore, we defer that analysis until after we present
the scaling of the data.

4.2 Scaling the data

Equation (8) suggests that all the data should collapse onto
a pair of scaling curves F , one for Φ > Φc and another for
Φ < Φc, if the data are plotted in terms of a rescaled activity
AR vs a rescaled time tR

AR =
η′′(t)

η′′0

∣∣∣∣ Φ

Φc
− 1

∣∣∣∣−β (12)

tR =
t

τ
=

t

t0

∣∣∣∣ Φ

Φc
− 1

∣∣∣∣ν , (13)

In a previous publication we showed that such scaling is
indeed observed near Φc.22 Here we present a somewhat dif-
ferent scaling analysis, consistent with the previous scaling,
that extends the scaling to a larger range of |Φ−Φc| and in the
process shows more precisely under what conditions scaling
breaks down.

We already know that for Φ > Φc, the long-time activity
η′′∞/η

′′
0 scales as |Φ/Φc − 1|β and that for Φ < Φc, η′′∞ → 0.

To focus on the temporal scaling of the activity, we subtract
off the log-time asymptotic part η′′∞, which is given by eqn (9).
This allows us to more directly compare the temporal scaling
of the activity above and below criticality. Therefore, we ex-
amine the scaling of a reduced activity δAR(t) the form

δAR(t) =
η′′(t)− η′′∞
η′′0 − η′′∞

e−|
Φ0
Φc
−1|ν (14)

=

∣∣∣∣ Φ

Φc
− 1

∣∣∣∣β GΦ

(
t

t0

∣∣∣∣ Φ

Φc
− 1

∣∣∣∣ν) . (15)

In this equation, Φ0 is the initial value of Φ at t0, and the
exponential factor takes into account the decay of activity that
occurs during the first time step before we start recording data.
This is a consequence of the discrete nature of the time t,
which implies that the reduced time tR starts at a the finite
value |Φ0/Φc − 1|ν .

Figure 10 shows δAR(t) plotted vs tR for data taken below
and above the phase transition. In these experiments, nematic
order builds up during the measurements, as shown in Fig. 7,
causing Φ(t) to decrease with time. We have taken this time
dependence into account in the data plotted in Fig. 10 by using
the measured time-dependent Φ(t). Such a procedure should
be valid in the quasistatic limit where the variation of Φ(t)
occurs on a time scale longer than the activity relaxation time
τ . Examining Fig. 10, we see that the scaled data, both above
and below the transition, are well described by a power law
quenched by an expoential

GΦ(tR) =
e−tR

tα
′
R

, (16)

with α′ = 0.75 ± 0.05, which further justifies our use of
eqn (11) in the previous section. This remarkable scaling
means that the relaxation time τ diverges both above and be-
low the transition according to (eqn 10).

4.3 Data that do not scale

In all of our experiments Φ evolves in time as nematic order
among the fibers builds up. In some cases, this means that the
system starts in the fluctuating state where the initial effec-
tive volume fraction is above the critical value (Φ0 > Φc) but
crosses over into the absorbing state and ends with Φ∞ < Φc.
Because τ diverges at Φc, this means that any time variation
in Φ(t) will necessarily occur on a time scale shorter than τ
very near Φc: the quasistatic condition assumed in the previ-
ous section will be violated in these cases.

Figure 11 shows data for Φ(t) > Φc for cases where
Φ0 > Φc, but Φ∞ < Φc. Data up to the time where Φ(t)
crosses Φc are shown. Obvious deviations from scaling are
apparent. Interestingly, the data all fall on or below the ex-
pected scaling curve given by eqn (16), indicating faster than
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Fig. 10 Scaling of the viscosity ratio AR(t) for c = 0.05, 0.10,
0.15, and 0.20. (a) Below (Φ < Φc) and (b) above (Φ > Φc) the
phase transition. The gray continuous line is given by
aR = t−α

′

R e−tR . The scaling behavior encompasses all fiber
concentrations and all shear rates studied. In general, the data above
the transition correspond to experiments with higher strain, higher
fiber concentration, and less fiber alignment.
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Fig. 11 Scaling curves of the viscosity ratio AR(t) for c = 0.05,
0.10, 0.15, and 0.20 for the the case where Φ(0) > Φc but crosses
over into the absorbing state and ends with Φ∞ < Φc. The gray
continuous line is given by aR = t−α

′

R e−tR .

expected relaxation. This is because the temporal variation in
η′′(t) is dominated by the time dependence of Φ(t), which in
this regime becomes faster that the expected relaxation time τ
for the activity.

Once Φ(t) passes below Φc, the quasistatic condition is
rapidly recovered and the data once again begins to decay as

Fig. 12 (—): Temporal decay of η′′(t) at c = 0.20, for selected
strain amplitudes. (— – —): Decay calculated using Φ(t),
eqn (9)-(10) and the universal exponents β = 0.84 and ν = 1.081.
The critical value is Φc = 0.39± 0.02 at this volume fraction.

t−α
′

= t−β/ν , because the effective volume fraction is very
near Φc. In Fig. 5, we show three such curves with dashed
gray lines showing the power-law decay. Because the time at
which this happens is delayed, we must replace t0 with t1, the
time at which the data emerges below Φc and and η′′0 with η′′1 ,
the corresponding viscosity at this time, in order to place the
data on the scaling curve. After this, the relaxation continues
along the scaling curve. These data are included in Fig. 10(a).
In discussing the time dependence of these results, particularly
as it relates to the observed scaling, we emphasize that time is
measured in units of the the period of oscillation: 1 period, 2
periods, etc. Halving or double the oscillation frequency has
no effect on the data so long as Re� 1.

4.4 Relaxation of η′′(t)

In the previous sections we have shown how the data can
be scaled using the time-dependent effective volume fraction
Φ(t). It is also interesting to see how this analysis describes
the raw data η′′(t) to better understand how the features ob-
served in η′′(t) are captured by our analysis.

Figure 12 shows representative data for c = 0.20, which
illustrates how the analysis works. The inflection in the data
observed at intermediate strain amplitudes is a consequence
of the nematic order that builds up under oscillatory shear in a
confined geometry.23 The model captures these kinds of fea-
tures and gives a reasonably good description of the data.
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Fig. 13 Relation between the critical strain amplitude and the
concentration, using Φc = 0.35. Initial γc (4), final γc ( ),
prediction of γc with the initial distribution of orbit (— - —),
maximal value of γc. (—), minimal value of γc (—). Inset:
Measures of Φc against the volume fraction c. Φc is measured at the
steady state (+), in the initial state (�), chosen to fit the whole
experiment (×) or chosen to in order to rescale the curves (�).

5 Critical strain amplitude

Figure 13 shows the dependence of the critical strain γc and
the critical effective volume fraction Φc (inset) on concentra-
tion. Recalling from §2.1 that all the data are above the overlap
concentration c? ≈ 0.01 but that only the highest two concen-
trations are clearly in the concentrated regime c?? ≈ 0.1, the
data suggest that Φc = 0.30 ± 0.02 in the semidilute regime
and a bit larger 0.40 ± 0.02 in the concentrated regime. This
may indeed be the case but at present there is no theoretical
understanding of what Φc should be.

The concentration dependence of the critical strain γc is
also shown. It is consistent with γc = O(1/c).

6 Conclusion

We studied the dynamics of a concentrated suspension of rods
under periodic shear at four different volume fractions rang-
ing from 0.05 to 0.2. For strain amplitudes near unity, the
orientation of the fibers evolves with time towards a steady
state in which the fibers orient substantially along the vortic-
ity axis. The evolution and dynamics of the fibers slows as
the fibers orient along the vorticity axis making collisions less
like. We quantitatively describe this effect by measuring the
cross-section of the fiber under shear and by defining an ef-
fective volume fraction Φ(t) that takes this cross section into
account. For low values of the effective volume fraction, the
suspension finds a state in which all the fibers have periodic

reversible trajectories. Above a critical threshold, the suspen-
sion cannot find such a state and fluctuations remain. These
fluctuations as well as the transient durations, are linked by
critical exponent to the effective volume fraction. We found
that the mechanism behind this transition is similar to the one
observed in sphere suspensions.

The effective volume fraction Φ ∝ γc is the equivalent un-
der periodic shear of an ideal collision rate. The ratio of Φ
over γc is a time-dependent scalar that represent the average
orientation of the suspension. Φ is expressed simply as a func-
tion of Sα, the orientation parameter of the projected angle α:
the effective volume fraction can be measured each period by
taking snapshot of the flow-vorticity plane. We showed that
the temporal decay in the effective volume fraction, which is
due to the evolution of the orientation distribution, is indepen-
dent of the strain amplitude or volume fraction.

At sufficiently large strain amplitudes, typically in the range
of γ ∼ 3 − 9, the effective volume fraction Φ ∝ γc al-
ways exceeds the critical volume fraction Φc ∼ 0.3 − 0.4. In
this high strain amplitude limit, the fibers continue to collide
and the system never reaches a reversible steady state. Under
these conditions, the nematic order diminishes significantly,
as discussed in a previous study.22 In no case do we observe
larger scale structures, as observed for some other rod-like
systems.38

Finally, we note that in an important numerical study by
Snook et al.,23 the alignment of fibers in the vorticity direction
was found to be strongly influenced by the confining walls of
the shear device. In our experiments, the distance between the
confining walls of the Couette device was 1.5L, well within
the narrow-gap regime defined by Snook et al..23 In future
studies, it would be interesting to investigate the effect of a
wider gap, as well as the effect of varying the aspect ratio of
the rods.

7 Material and methods

7.1 Solution

The continuous phase of the suspension is a mix of Triton-
X100, Zinc Chloride (ZnCl2), and a hydrochloric acid (HCl)
solution (pH = 0). Its real viscosity is η0 = 1 Pa-s and
its density is ρ = 1.129 gm/ml. The density is adjusted by
adding small amounts of either ZnCl2 or Triton until it per-
fectly matches the density of the fiber at the experiments tem-
perature (22.0◦C).

7.2 Strain protocol

The suspensions are placed between concentric cylinders (gap
g = 2.2 mm) of a transparent thermostated Couette cell.
The inner cylinder (R = 25 mm), driven by a Paar Physica
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Fig. 14 Comparison between the distribution of α (�) and α0 (—),
at the start of experiment. This dataset is an average over the four
volume fraction tested. The distribution of α0 is skewed toward the
smallest values but remain broad. Inset: Dataset for each volume
fraction, c = 0.20 (�), c = 0.15 (N), c = 0.10 (�), c = 0.05 ( ).

MCR300 rheometer-head, is rotated back and forth through
a small angle ψ to produce an oscillatory time-dependent
strain γ sinωt with angular frequency ω and strain amplitude
γ = ψR/g. Given the aspect ratio L/D = 11, the necessary
strain amplitude to achieve a full period is 45. In our experi-
ments, the strain is limited to 15, which implies that the fiber
trace only a fraction of their Jeffery orbits.

7.3 Extraction of the distribution Dt(C)

We evaluate the distribution Dt(C) of orbit C using the dis-
tribution at t of α, the angle of the projected fiber on the x-z
plane and the distribution of azimuth φ, which is a constant
throughout all our experiments. When a fiber describe a Jef-
fery orbit, its projected angle α varies between π/2 and α0,
the smallest angle a fiber has with the x axis when it describes
a Jeffery orbit (eqn (17) and eqn (18)).

tan(α0) =
1

Cr
(17)

tan(α) = tan(α0)
√

1 + r2 tan2(φ) (18)

Since the distribution of φ is constant of the system, the dis-
tribution of α0 (Fig. 14) is deduced from the observed distri-
bution of α. Dt(C) (the distribution of C) is then taken from
the distribution of α0 using eqn (17).
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Fig. 15 Inset: Activity A(t) measured from tracer fibers, as defined
by eqn (19), presented for c = 0.20. γ = 1.6 (�), γ = 2.10 (�),
γ = 2.35 (�), γ = 2.5 (�), γ = 3.2 (�), and t−0.75 (— - —).
Main Graph: Ratio A(t)/η′′, which evaluate the relative evolution
of these two activity measurements. c = 0.20 (—), c = 0.15 (—),
c = 0.10 (—)

7.4 Comparison between particle tracking and apparent
imaginary viscosity

The activity can be measured by the apparent complex viscos-
ity, whose imaginary (out-of-phase) component η′′ is a func-
tion of the particles collisions. It can also be measured with
the mean square angular displacement of theN(t) tracer fibers
from t to t+ 1 (eqn (19)).

A(t) =
1

N(t)

n∑
i=0

|αi(t)− αi(t− 1)|2, (19)

The apparent viscosity has a better signal-over-noise ratio
than the mean square displacement we can obtain from
tracking, since the measurement is averaged over the whole
sample instead of the 20 to 50 fiber we can capture in a frame
(there is around 106 fiber in a suspension, yet a snapshot
capture less than 50 of them). Fig. 15 shows that the ratio
between the mean square angular displacement A(t) and η′′

is constant throughout the experiment, showing that these two
activity measurement are equivalent.
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2012, 8, 9731.
12 J. R. Happel and H. Brenner, Low Reynolds Number Hydrodynamics:

With Special Applications to Particulate Media, Springer, 1965.
13 D. J. Pine, J. P. Gollub, J. F. Brady and A. M. Leshansky, Nature, 2005,

438, 997–1000.
14 B. Metzger and J. E. Butler, Phys. Rev. E, 2010, 82, 051406.
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