Issue 90, 2014

A triangular three-dye DNA switch capable of reconfigurable molecular logic

Abstract

Structural DNA nanotechnology has developed profoundly in the last several years allowing for the creation of increasingly sophisticated devices capable of discrete sensing, locomotion, and molecular logic. The latter research field is particularly attractive as it provides information processing capabilities that may eventually be applied in situ, for example in cells, with potential for even further coupling to an active response such as drug delivery. Rather than design a new DNA assembly for each intended logic application, it would be useful to have one generalized design that could provide multiple different logic gates or states for a targeted use. In pursuit of this goal, we demonstrate a switchable, triangular dye-labeled three-arm DNA scaffold where the individual arms can be assembled in different combinations and the linkage between each arm can be physically removed using toehold-mediated strand displacement and then replaced by a rapid anneal. Rearranging this core structure alters the rates of Förster resonance energy transfer (FRET) between each of the two or three pendant dyes giving rise to a rich library of unique spectral signatures that ultimately form the basis for molecular photonic logic gates. The DNA scaffold is designed such that different linker lengths joining each arm, and which are used as the inputs here, can also be used independently of one another thus enhancing the range of molecular gates. The functionality of this platform structure is highlighted by easily configuring it into a series of one-, two- and three-input photonic Boolean logic gates such as OR, AND, INHIBIT, etc., along with a photonic keypad lock. Different gates can be realized in the same structure by altering which dyes are interrogated and implementation of toehold-mediated strand displacement and/or annealing allows reconfigurable switching between input states within a single logic gate as well as between two different gating devices.

Graphical abstract: A triangular three-dye DNA switch capable of reconfigurable molecular logic

Supplementary files

Article information

Article type
Paper
Submitted
25 Aug 2014
Accepted
18 Sep 2014
First published
07 Oct 2014

RSC Adv., 2014,4, 48860-48871

A triangular three-dye DNA switch capable of reconfigurable molecular logic

S. Buckhout-White, J. C. Claussen, J. S. Melinger, Z. Dunningham, M. G. Ancona, E. R. Goldman and I. L. Medintz, RSC Adv., 2014, 4, 48860 DOI: 10.1039/C4RA10580J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements