Issue 69, 2014

Combined electrochemical and microscopic study of porous enzymatic electrodes with direct electron transfer mechanism

Abstract

In the present work electrochemical and microscopic methods have been utilized to get more insight into the complex relationship between the preparation route, structure and activity of porous enzymatic electrodes. Enzymatic electrodes have been prepared following two procedures. In one procedure enzymes were physically entrapped into a porous conductive matrix stabilized by “inert” binder (Vulcan-PVDF), while in the second one (Vulcan-Gelatin) gelatin has been used as a binder and the electrodes were cross-linked. Vulcan-PVDF electrodes show exceptionally high activity (up to 1.2 mA cm−2) compared to Vulcan-Gelatin electrodes (0.3 mA cm−2) at nominally lower enzyme loading. The scanning electron microscopy cross-sections of these electrodes revealed similar thicknesses, but a higher level of Vulcan nanomaterial agglomeration, somewhat reduced porosity and formation of gelatin film on top in the case of Vulcan-Gelatin electrodes. Additionally, fluorescence microscopy studies provided evidence of a higher level of enzyme agglomeration in the case of cross-linking. Although the gelatin matrix and the reduced catalyst layer porosity might slow down hydrogen peroxide diffusion, Vulcan-Gelatin electrodes are less affected by mass transfer conditions than Vulcan-PVDF electrodes. A plausible cause of the Vulcan-Gelatin electrode inferior performance is a lower number of active enzymes (lower enzyme utilization) compared to the Vulcan-PVDF electrode caused by a higher level of enzyme agglomeration in former case.

Graphical abstract: Combined electrochemical and microscopic study of porous enzymatic electrodes with direct electron transfer mechanism

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2014
Accepted
01 Aug 2014
First published
04 Aug 2014
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2014,4, 36471-36479

Author version available

Combined electrochemical and microscopic study of porous enzymatic electrodes with direct electron transfer mechanism

M. Varničić, K. Bettenbrock, D. Hermsdorf, T. Vidaković-Koch and K. Sundmacher, RSC Adv., 2014, 4, 36471 DOI: 10.1039/C4RA07495E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements