Double thermoresponsive di- and triblock copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: synthesis and comparative study of solution behaviour†
Abstract
Poly(N-vinylcaprolactam) (PNVCL) and poly(N-vinylpyrrolidone) (PNVP) are water soluble polymers of interest especially in the biomedical field. Moreover, PNVCL is characterized by a lower critical solution temperature close to 36 °C in water, which makes it useful for the design of thermoresponsive systems. In this context, we used the cobalt-mediated radical polymerization (CMRP) and reaction coupling (CMRC) for synthesizing a series of well-defined NVCL and NVP-based copolymers, including statistical copolymers as well as double thermoresponsive diblocks and triblocks. Dynamic light scattering and turbidimetry analyses highlighted the crucial impact of the copolymer composition and architecture on the cloud point temperature (TCP) of each segment and also their influence on the multistep assembly behaviour of block copolymers. Addition of NaCl enabled us to adjust the inter-TCP range of the di- and triblock in which selective precipitation of one block and self-assembly of the copolymer were favoured. Overall, data presented here provide a basis for the synthesis of a broad range of NVCL/NVP based copolymer architectures with a tunable thermal response in water.