Issue 5, 2014

Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection

Abstract

This work reports the synthesis of novel CdTe quantum dot (QD)-functionalized porous ZnO nanosheets via a covalent binding method with (3-aminopropyl)triethoxysilane as a linker. The functional nanosheets showed an excellent visible-light absorbency and much higher photoelectrochemical activity than both CdTe QDs and ZnO nanosheets due to the porous structure and appropriate band alignment between the CdTe QDs and ZnO nanosheets. Using hydrogen peroxide as an electron acceptor the nanosheet-modified electrode showed a sensitive photocurrent response. This speciality led to a novel methodology for the design of hydrogen peroxide-related biosensors by the formation or consumption of hydrogen peroxide. Using biotin-labeled DNA as capture probe, a model biosensor was proposed by immobilizing the probe on a nanosheet-modified electrode to recognize target DNA in the presence of an assistant DNA, which produced a “Y” junction structure to trigger a restriction endonuclease-aided target recycling. The target recycling resulted in the release of biotin labeled to the immobilized DNA from the nanosheet-modified electrode, thus decreased the consumption of hydrogen peroxide by horseradish peroxidase-mediated electrochemical reduction after binding the left biotin with horseradish peroxidase-labeled streptavidin, which produced an increasing photoelectrochemical response. The ‘signal on’ strategy for photoelectrochemical detection of DNA showed a low detection limit down to the subfemtomole level and good specificity to single-base mismatched oligonucleotides. The sensitized porous ZnO nanosheets are promising for applications in both photovoltaic devices and photoelectrochemical biosensing.

Graphical abstract: Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection

Article information

Article type
Paper
Submitted
07 Sep 2013
Accepted
27 Nov 2013
First published
29 Nov 2013

Nanoscale, 2014,6, 2710-2717

Author version available

Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection

W. Wang, Q. Hao, W. Wang, L. Bao, J. Lei, Q. Wang and H. Ju, Nanoscale, 2014, 6, 2710 DOI: 10.1039/C3NR04777F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements