Issue 7, 2014

The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles

Abstract

In this paper we report the preparation of a series of Bi3+-doped TiO2 nanoparticles with different Bi-concentrations, i.e. 0.25–5% by a facile sol–gel process and their application as an efficient photocatalyst. The detailed characterization revealed that the Bi-doped TiO2 catalysts possess densely grown nanoparticles, a high specific surface area, crystalline anatase TiO2 and good optical properties. The incorporation of Bi3+ into the TiO2 lattice led to the expansion of the TiO2 spectral response into the visible light region and the efficient separation of charge carriers. The prepared samples were employed for the photocatalytic degradation of Alizarin red S dye (ARS) under visible light illumination. It was found that the incorporation of the Bi3+ ions in the TiO2 lattice causes a marked improvement in the photocatalytic degradation of the ARS dye; however, the degradation efficiency depended upon the Bi+3 ion doping concentration and the dose of the prepared catalyst. The detailed photocatalytic experiments confirmed that the 1% Bi+3 ion doping concentration and 0.1 g L−1 dose exhibited the best photocatalytic degradation efficiencies for the model dye. Moreover, more than 80% degradation of ARS was observed by the prepared Bi-doped catalysts within 90 minutes under visible light. The synthesized Bi-doped TiO2 nanoparticles revealed a superior photocatalytic behavior towards the photocatalytic degradation of ARS under similar experimental conditions, as compared to the synthesized TiO2 nanoparticles and other commercially available derivatives (TiO2 PC-50 and TiO2 P25).

Graphical abstract: The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles

Article information

Article type
Paper
Submitted
04 Feb 2014
Accepted
21 Mar 2014
First published
24 Mar 2014

New J. Chem., 2014,38, 3127-3136

Author version available

The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles

S. Sood, S. K. Mehta, A. Umar and S. K. Kansal, New J. Chem., 2014, 38, 3127 DOI: 10.1039/C4NJ00179F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements