Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2014
Previous Article Next Article

Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand

Author affiliations

Abstract

Luminescence mechanisms of EuIII, TbIII, GdIII and NdIII complexes with a hexadentate ligand (abbreviated to EuL, TbL, GdL, and NdL, respectively), which have two bipyridine moieties bridged by an ethylenediamine unit, have been examined. Our molecular design is that each complex forms a single helical polar structure based on the chelate ring to retain solubility in solutions. EuL and NdL show comparably bright emission from ff transitions both in acetonitrile solution and in the solid state. To understand the mechanism of the emission in detail, the energy level of the triplet (T) state of the ligand L has been estimated based on the phosphorescence measurements of GdL, because GdIII shows no ff emission. The donor level of the T state of L and the acceptor level of EuIII or NdIII can overlap, indicating that the excited photon localized on L has been used for the efficient ff emission, while not for ππ* emission. For TbL, the luminescence quantum yield is significantly dependent on temperature and the state: in the solid state of TbL, the quantum yield of ff emission is over 90% at 77 K, while no luminescence is observed at room temperature, and in solution TbL shows no emission. This observation suggests that the emissive f-level of TbIII and the energy donor level of the excited T state of L are in thermal equilibrium. The described lanthanide complexes are stable and retain their molecular structure even in solutions and show characteristic luminescence behaviour based on the energy relaxation process of each lanthanide ion. Furthermore the HoIII complex with L (HoL) has been prepared and its structure has been analyzed. HoL has a twisted arrangement of the bipyridine moiety surrounding HoIII due to the small ionic radius of HoIII.

Graphical abstract: Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Aug 2013, accepted on 07 Jan 2014 and first published on 09 Jan 2014


Article type: Paper
DOI: 10.1039/C3NJ00910F
Author version
available:
Download author version (PDF)
Citation: New J. Chem., 2014,38, 1225-1234
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand

    M. Hasegawa, H. Ohtsu, D. Kodama, T. Kasai, S. Sakurai, A. Ishii and K. Suzuki, New J. Chem., 2014, 38, 1225
    DOI: 10.1039/C3NJ00910F

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements