Studying the effects of Zr-doping in (Bi0.5Na0.5)TiO3via diffraction and spectroscopy
Abstract
The structural properties of (Bi0.5Na0.5)Ti1−xZrxO3 (where 0 ≤ x ≤ 0.7) have been investigated using powder diffraction and X-ray absorption spectroscopy. Diffraction measurements on (Bi0.5Na0.5)TiO3 confirm that both monoclinic Cc and rhombohedral R3c phases are present at room temperature. Doping small amounts of Zr into the B site of (Bi0.5Na0.5)TiO3 initially stabilizes the rhombohedral phase before the orthorhombic Pnma phase begins to form at x = 0.5. Analysis of the Ti K-edge and Zr L3-edge XANES spectra show that the crystallographic phase change has very little effect on the local structure of Ti4+/Zr4+ cations, suggesting that there is little change in the cation off-center displacement within the BO6 octahedra with each successive phase change.