Issue 46, 2014

Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells

Abstract

Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.

Graphical abstract: Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells

Article information

Article type
Paper
Submitted
28 Jul 2014
Accepted
25 Sep 2014
First published
25 Sep 2014

Dalton Trans., 2014,43, 17343-17351

Author version available

Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells

N. D. Thorat, S. V. Otari, R. M. Patil, R. A. Bohara, H. M. Yadav, V. B. Koli, A. K. Chaurasia and R. S. Ningthoujam, Dalton Trans., 2014, 43, 17343 DOI: 10.1039/C4DT02293A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements