Efficient and persistent cold cathode emission from CuPc nanotubes: a joint experimental and simulation investigation†
Abstract
In the current report, chemically synthesized copper phthalocyanine (CuPc) nanotubes are shown to exhibit unprecedentedly well cold cathode emission characteristics with turn-on field (3.2 V μm−1) and stable emission during long intervals (200 min). Simulation of electric field distribution via finite element method around an isolated nanotube emitter in a manner parallel to the experimental setup (inter-electrode distance = 180 μm) exhibits good corroboration of theoretical premises with experimental findings. Obtained results strongly indicate CuPc nanotubes to be potential candidate as cold cathode emitter for electron emission based applications such as field emission displays and vacuum nano-electronic devices.