Issue 15, 2014

Advanced thermoelectrics governed by a single parabolic band: Mg2Si0.3Sn0.7, a canonical example

Abstract

The well-known single parabolic band (SPB) model has been useful in providing insights into the understanding of transport properties of numerous thermoelectric materials. However, the conduction and valence bands of real semiconductors are rarely truly parabolic which limits the predictive power of the SPB model. The coincidence of the band edges of two parabolic bands, a situation arising in Mg2Si1−xSnx solid solutions when x ∼ 0.7, naturally makes the SPB approximation applicable to evaluate all transport parameters. We demonstrate this in the case of Bi-doped Mg2Si0.3Sn0.7 where the minima of the two conduction bands at the X-point of the Brillouin zone coincide. The combination of a large density-of-states effective mass m* ∼ 2.6 me arising from the enhanced valley degeneracy Nv, high mobility μd due to low deformation potential Ed (8.77–9.43 eV), and ultra-low alloy scattering parameter Ea (0.32–0.39 eV) leads to an outstanding power factor, PFmax ∝ (m*)3/2μd, of up to 4.7 mW m−1 K−2 at around 600 K. The specification and improved understanding of scattering parameters using the SPB model are important and instructive for further optimization of the thermoelectric performance of n-type Mg2Si0.3Sn0.7.

Graphical abstract: Advanced thermoelectrics governed by a single parabolic band: Mg2Si0.3Sn0.7, a canonical example

Supplementary files

Article information

Article type
Communication
Submitted
12 Feb 2014
Accepted
19 Feb 2014
First published
19 Feb 2014

Phys. Chem. Chem. Phys., 2014,16, 6893-6897

Author version available

Advanced thermoelectrics governed by a single parabolic band: Mg2Si0.3Sn0.7, a canonical example

W. Liu, H. Chi, H. Sun, Q. Zhang, K. Yin, X. Tang, Q. Zhang and C. Uher, Phys. Chem. Chem. Phys., 2014, 16, 6893 DOI: 10.1039/C4CP00641K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements