New studies on molecular chirality in the gas phase: enantiomer differentiation and determination of enantiomeric excess
Abstract
Chirality plays a fundamental role in the activity of biological molecules and broad classes of chemical reactions. The chemistry of life is built almost exclusively on left-handed amino acids and right-handed sugars, a phenomenon known as “homochirality of life”. Furthermore, most drugs developed in the last decade are of specified chirality. Thus, fast and reliable methods that can differentiate molecules of different handedness, determine the enantiomeric excess of even molecular mixtures, and allow for an unambiguous determination of molecular handedness are of great interest, in particular with respect to complex mixtures. In this perspective article, we discuss the recent developments, with an emphasis on modern spectroscopic methods using gas-phase samples, such as photoelectron circular dichroism, Coulomb explosion imaging, and microwave three-wave mixing.