Issue 13, 2012

Liquid crystal beads constrained on thin cellulosic fibers: electric field induced microrotors and N–I transition

Abstract

We directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N–I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable “spherical particle” object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic–isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.

Graphical abstract: Liquid crystal beads constrained on thin cellulosic fibers: electric field induced microrotors and N–I transition

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2011
Accepted
06 Jan 2012
First published
20 Feb 2012

Soft Matter, 2012,8, 3634-3640

Liquid crystal beads constrained on thin cellulosic fibers: electric field induced microrotors and N–I transition

Y. Geng, P. L. Almeida, J. L. Figueirinhas, E. M. Terentjev and M. H. Godinho, Soft Matter, 2012, 8, 3634 DOI: 10.1039/C2SM06602E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements