Issue 8, 2012

A general chemical synthesis platform for crosslinking multivalent single chain variable fragments

Abstract

Multivalent single chain variable fragments (scFv) show increased affinity to tumor-associated antigens compared to monovalent scFv and intact monoclonal antibodies (mAb). Multivalent constructs can be derived from self-associating or covalent scFv with covalent constructs offering improved in vivo and in vitro stability. Covalent attachment of scFv can be achieved using genetically engineered expression vectors that afford scFv with site specific cysteine functionality. Expression vectors for di-scFv-C wherein the cysteine is located in the center of two scFv have also been developed for attaching chemically reactive linkers. In the example illustrated here, the di-scFv-C is derived from a mAb directed against the MUC1 epitope, which is presented on cancer cells. To achieve multivalency, a chemical crosslinking strategy utilizing various azide and multi-alkyne functionalized polyethylene glycol (PEG) linkers was implemented. Conjugation was achieved by attachment of these linkers to the scFv thiol functionality. Chemoselective ligation was employed to covalently link different protein conjugates viacopper(I) catalyzed azide alkyne 1,3-dipolar cycloaddition reaction (CuAAC) chemistry. Ligations were achieved in >70% yield using a specific set of linkers as determined by SDS-PAGE and densitometry. ELISA showed increased tumor binding of a tetravalent scFv providing a versatile chemical crosslinking strategy for construction of multivalent and bi-specific immunoconjugates that retain biological activity and have potential application in pre-targeted radioimmunotherapy and imaging.

Graphical abstract: A general chemical synthesis platform for crosslinking multivalent single chain variable fragments

Article information

Article type
Paper
Submitted
28 Dec 2010
Accepted
20 Oct 2011
First published
25 Oct 2011

Org. Biomol. Chem., 2012,10, 1521-1526

A general chemical synthesis platform for crosslinking multivalent single chain variable fragments

J. G. Schellinger, A. Kudupudi, A. Natarajan, W. Du, S. J. DeNardo and J. Gervay-Hague, Org. Biomol. Chem., 2012, 10, 1521 DOI: 10.1039/C0OB01259A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements