Unfolding collapsed polyelectrolytes in alternating-current electric fields
Abstract
We investigate the unfolding of single polyelectrolyte (PE) chains collapsed by trivalent salt under the action of alternating-current (AC) electric fields through computer simulations and theoretical scaling. The results show that a collapsed chain can be unfolded by an AC field when the field strength exceeds the direct-current (DC) threshold and the frequency is below a critical value, corresponding to the inverse charge relaxation/dissociation time of condensed trivalent counterions at the interface of the collapsed electrolyte. This relaxation time is also shown to be identical to the DC chain fluctuation time, suggesting that the dissociation of condensed polyvalent counterion on the collapsed PE interface controls the polyelectrolyte dipole formation and unfolding dynamics under an AC electric field.