Issue 25, 2011

Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles

Abstract

Surface chemistry can become pronounced in determining the optical properties of colloidal metal nanoparticles as the nanoparticles become so small (diameters <20 nm) that the surface atoms, which can undergo chemical interactions with the environment, represent a significant fraction of the total number of atoms although this effect is often ignored. For instance, formation of chemical bonds between surface atoms of small metal nanoparticles and capping molecules that help stabilize the nanoparticles can reduce the density of conduction band electrons in the surface layer of metal atoms. This reduced electron density consequently influences the frequency-dependent dielectric constant of the metal atoms in the surface layer and, for sufficiently high surface to volume ratios, the overall surface plasmon resonance (SPR) absorption spectrum. The important role of surface chemistry is highlighted here by carefully analyzing the classical Mie theory and a multi-layer model is presented to produce more accurate predictions by considering the chemically reduced density of conduction band electrons in the outer shell of metal atoms in nanoparticles. Calculated absorption spectra of small Ag nanoparticles quantitatively agree with the experimental results for our monodispersed Ag nanoparticles synthesized via a well-defined chemical reduction process, revealing an exceptional size-dependence of absorption peak positions: the peaks first blue-shift followed by a turnover and a dramatic red-shift as the particle size decreases. A comprehensive understanding of the relationship between surface chemistry and optical properties is beneficial to exploit new applications of small colloidal metal nanoparticles, such as colorimetric sensing, electrochromic devices, and surface enhanced spectroscopies.

Graphical abstract: Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles

Article information

Article type
Perspective
Submitted
30 Jan 2011
Accepted
20 Apr 2011
First published
25 May 2011

Phys. Chem. Chem. Phys., 2011,13, 11814-11826

Surface chemistry: a non-negligible parameter in determining optical properties of small colloidal metal nanoparticles

Y. Sun, S. K. Gray and S. Peng, Phys. Chem. Chem. Phys., 2011, 13, 11814 DOI: 10.1039/C1CP20265K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements