Issue 12, 2011

X-Ray spectroscopy of electrochemically deposited iridium oxide films: detection of multiple sites through structural disorder

Abstract

We report the results of X-ray absorption spectroscopy studies on electrochemically deposited iridium oxide films. The emphasis of the study is the correlation of X-ray derived structural data with electrochemically controlled charge state. Data were acquired for films subject to redox cycling in neutral and alkaline aqueous media. In both cases, cyclic voltammetric responses show two redox couples, coulometrically of roughly equal magnitude. Assays of the iridium population (based on the iridium L3 absorption edge amplitude) and the charge injected (based on integration of the voltammetric response) show that overall an average of ca. one electron per iridium atom is transferred. The absorption edge shifts indicate that the formal charge on the iridium changes, on average, from ca. 3.5+ to ca. 4.5+ across the entire process. EXAFS-derived changes in mean Ir–O distance and their mean square variation have been interpreted in terms of a two-site model, in which the two types of site have distinct redox potentials. Variations of local structure and disorder with potential are discussed and a generic model for structural disorder (parameterized via Debye–Waller factor) with diagnostic capability is developed.

Graphical abstract: X-Ray spectroscopy of electrochemically deposited iridium oxide films: detection of multiple sites through structural disorder

Article information

Article type
Paper
Submitted
11 Aug 2010
Accepted
02 Nov 2010
First published
20 Dec 2010

Phys. Chem. Chem. Phys., 2011,13, 5252-5263

X-Ray spectroscopy of electrochemically deposited iridium oxide films: detection of multiple sites through structural disorder

A. R. Hillman, M. A. Skopek and S. J. Gurman, Phys. Chem. Chem. Phys., 2011, 13, 5252 DOI: 10.1039/C0CP01472A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements