Issue 9, 2010

Low temperature/high pressure polymorphism in dl-cysteine

Abstract

We compare the response of the crystalline DL-cysteine to cooling and to increasing pressure. The structure undergoes a low-temperature phase transition into an isosymmetric polymorph, DL-cysteine-II, with the conformation of zwitterion changing from gauche− to gauche+. The first pressure-induced transition at 0.1 GPa (the lowest pressure reported for a phase transition in a crystalline amino acid thus far) gives the same polymorph. Further compression of DL-cysteine-II proceeds differently on cooling and with increasing hydrostatic pressure. DL-cysteine-II is preserved down to 3 K, but undergoes phase transitions on compression at about 1.55 GPa, and 6.20 GPa. The changes in the hydrogen bond network preceding the phase transition in DL-cysteine-II in the range 0.25–0.85 GPa differ from those observed on cooling the same structure, but resemble those preceding pressure-induced phase transitions in β- and γ-glycine.

Graphical abstract: Low temperature/high pressure polymorphism in dl-cysteine

Supplementary files

Article information

Article type
Paper
Submitted
24 Feb 2010
Accepted
21 Apr 2010
First published
24 May 2010

CrystEngComm, 2010,12, 2551-2560

Low temperature/high pressure polymorphism in DL-cysteine

V. S. Minkov, N. A. Tumanov, R. Q. Cabrera and E. V. Boldyreva, CrystEngComm, 2010, 12, 2551 DOI: 10.1039/C003617J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements