Issue 8, 2003

A proposed model of Mycobacterium avium complex dihydrofolate reductase and its utility for drug design

Abstract

A homology model of Mycobacterium avium complex dihydrofolate reductase (MAC DHFR) was constructed on the basis of the X-ray crystal structure of Mycobacterium tuberculosis (Mtb) DHFR. The homology searching of the MAC DHFR resulted in the identification of the Mtb DHFR structure (PDB 1DF7) as the template for the model building. The MAC enzyme sequence was aligned to that of the Mtb counterpart using a modified Needleman and Wunsch methodology. The initial geometry to be modeled was copied from the template, either fully or partially depending on whether the residues were conserved or not, respectively. Using a randomized modeling procedure, 10 independent models of the target protein were built. The cartesian average of all the model structures was then refined using molecular mechanics. The resulting model was assessed for stereochemical quality using a Ramachandran plot and by analyzing the consistency of the model with the experimental data. The structurally and functionally important residues were identified from the model. Further, 5-deazapteridines recently reported as inhibitors of MAC DHFR were docked into the active site of the developed model. All the seven inhibitors used in the docking study have a similar docking mode at the active site. The network of hydrogen bonds around the 2,4-diamino-5-deazapteridine ring was found to be crucial for the binding of the inhibitors with the active site residues. The 5-methyl group of the inhibitors was located in a narrow hydrophobic pocket at the bottom of the active site. The relative values of the three torsion angles of the inhibitors were found to be important for the proper orientation of the inhibitor functional groups into the active site.

Graphical abstract: A proposed model of Mycobacterium avium complex dihydrofolate reductase and its utility for drug design

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2002
Accepted
03 Feb 2003
First published
13 Mar 2003

Org. Biomol. Chem., 2003,1, 1315-1322

A proposed model of Mycobacterium avium complex dihydrofolate reductase and its utility for drug design

P. S. Kharkar and V. M. Kulkarni, Org. Biomol. Chem., 2003, 1, 1315 DOI: 10.1039/B212211A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements